
Using Deep Neural Networks for Automated Speech Recognition
Elie Michel

August 28th, 2015

Internship from April 27st to October 27st, 2015 in
the Watson Speech and Language Technologies team
at Interactions LLC under the supervision of Patrick
Haffner.

1 Introduction

Automatic Speech Recognition (ASR) and Natural
Language Understanding (NLU) have been studied for
decades and are still addressing challenging problems
whose variety requires the collaboration of a wide
range of scientific domains. Recognizing words from
an audio signal, and then understanding the meaning
of the sentences they form mobilizes a lot of prior
knowledge, even for the human brain.

Moreover, those technologies can benefit to a lot of
products. They leverage the use of new hand free or re-
mote ways to interact with devices or query databases,
through virtual assistants. The commercial release of
such assistants is very recent and many big companies
invest in it1. They find promising applications in cars,
home automation, wearable devices, etc.

But the reliability of those automated systems is still
an issue. Even the state-of-the-art of fully automated
speech recognition is unable to reach the human accu-
racy, especially in noisy environments, and detecting
the intent is even harder.

To address this problem, Interactions has developed a
method to couple both automated and human speech

1Main examples of virtual assistants are Siri (Apple, Octo-
ber 2011), Google Now (Google, July 2012), Cortana (Microsoft,
April 2014), Echo (Amazone, November 2014) and the very
recently released M (Facebook, August 26th, 2015)

recognition known as Adaptive-Understanding2, in
which the machine can decide to ask for human help
if it is not confident enough.

This way, the company has been able to develop a
reliable product, but it has still a lot of interest in
researching for more accurate systems since the use
of human understanding is expensive.

Section 2 presents the company and shows why its or-
ganization requires a research team and what are the
main challenges it addresses. It also briefly presents
the team, which has an independent history. Then
Section 3 explains more technically the state-of-the-
art solutions used for speech and language processing.
Section 4 focuses on a class of models whose use is
growing in this pipeline, namely Deep Neural Net-
works. In Section 5, the tools and implementations
available are described. Given the background of all
the previous sections, section 6 presents my work and
contributions during this internship, both scientifically
and technically.

2 Presentation of the company

2.1 Overview

Founded in 2004, Interactions started with humans
acting as mechanical turks to replace the ASR in a
directed dialog system. While this sounds counter-
intuitive, it provided extraordinary productivity im-

2http://www.interactions.net/product/adaptive-
understanding/

1

provements over an explicit human-human dialog,
while also delivering a much better accuracy than
pure ASR systems. Thus it was seen as a good com-
promise for many large US companies to handle the
first prompts of their customer service.

More recently, the company grew its business around
the key idea of Adaptive-Understanding which couples
both automated methods and human-based oracles to
be able to target high accuracies and hence develop
real applications of the state of the research in ASR
and NLU.

2.2 Adaptive-Understanding

The overall idea of Adaptive-Understanding is to dy-
namically request a human oracle when the degree of
confidence provided by automated system along with
its output is too low.

The definition of too low is given by a target accuracy,
while the trade-off is on the balance between the use
of automated system or atomic recognition queries
sent to human Intern Analysts. The evolution of the
overall accuracy is measured to find the appropriate
confidence threshold (See Figure 1).

95%

0% 100%
% of rejection

a
cc

u
ra

cy

48%

100%

70%

MachineHuman

Figure 1: Accuracy of the final system as a function
of the rejection rate (hand-drew curve). When there
is no rejection, the accuracy is the one of a fully
automated system. A rejection of 100% means that
we use only humans. For any accuracy in between, a
rejection rate can be found.

The company’s whitepaper3 reports that to reach a
target accuracy of 95% on open ended questions, 52%
of the input utterances is handled by the machine and
so 48% is rejected to humans. Since the company’s
technology is under permanent development, those
figures may have changed since then.

Note that the final error rate regroups both false
positives from automation, where the machine output
both a wrong answer and a high confidence score, and
the human error, that is of course not null.

2.2.1 User benefits

Thanks to this idea, the imperfections of the state
of the research does not reflect on the product itself,
but on the maintenance price it costs to the company.
This is the key that brings the research to a viable
product.

This method is also particularly efficient to handle
cases that are really hard for a machine like out-of-
grammar responses due to proper nouns or requiring
cultural knowledge.

Plus, waiting for an available human agent, what can
be fatal to a good user experience, is not needed any
more.

2.2.2 Human analysts benefits

Compared with a usual call center where human
agents handle full conversations with users, many
feel more comfortable with just having to handle sin-
gle utterances. For instance, they do not need to fake
kindness all the day face to users that themselves are
not always kind. They do not require any explicit
knowledge besides knowing the interface and a local
mistake has less bad consequences. To motivate the
agent, the whole process has been gamified.

3http://www.interactions.net/resources/whitepapers/#ufh-
i-13423679-whitepaper-broadening-the-conversation

2

2.2.3 Company benefits

As the majority of cases is handled automatically, the
company does not need as many human agents as
with a all-human call center and so it is less expensive
to maintain and more flexible.

2.2.4 Research benefits

One of the most interesting byproducts of this method
is that it generates labeled data every day. Given how
important datasets are in machine learning, this is
really helpful.

Furthermore, once the Human Analyst setup is im-
plemented, a part of it can be used for research and
development.

2.3 Applications

The Adaptive-Understanding is used to assist both
ASR and NLU and the main application is to maintain
Customer Care call centers for other companies.

It builds tailored Virtual Assistants to help the user
find answer to their questions related to the company
in a natural way.

It is more than an interactive menu since the agent
remembers any meaningful piece of information about
the call to avoid prompting for an information that
was a side answer to a previous question for instance.

2.4 Technical needs

Given its business model, the company has a deep
interest in fostering research on ASR and NLU to
get the automated part more accurate and so request
less interventions of human analysts, who are more
expensive than machines.

Many of the challenges it addresses are also research
problems.

The ASR needs to be less sensitive to background
noise and word-level noise such as “um”, “ah” or more

robust to difficult caller accents. The NLU and intent
detection needs to be more robust to complicated
sentence constructions or out-of-vocabulary words.

Furthermore, there is a growing need for multilingual
systems where the lack of data, compared to the size
of English datasets, can be a problem.

For a given accuracy, other features also needs to be
taken into account. The system has to be real time,
so the models cannot be arbitrarily big. As for a lot
of Machine Learning task, the training time can be
really important. Given the huge amount of training
data and the complexity of the problem, the time for
an end-to-end training is many weeks!

For all those reasons, Interactions acquired in the
end of the year 2014 the AT&T Watson Speech and
Language Technologies (SLT) team4.

2.5 The Watson Research Team

The essential structure of the Watson team dates
from 1996, after AT&T spun off the infamous Bell
Laboratories into Lucent Technologies, but many of
its members where working in the formerly AT&T Bell
Labs before and Watson platform relies on previous
works.

Work for customer care before: Hom May I Help You,
launched in 20015

virtual assistant develop interface of things

Conclusion: Mix between dynamism of a young com-
pany and the expertise of an experimented team.

3 Speech and Language Tech-
nologies

Speech and Language Technologies regroup both
speech analysis and synthesis, as shown on Figure 2,

4http://www.interactions.net/press-releases/interactions-
closes-strategic-deal-acquire-att-watson-speech-recognition-
natural-language-understanding-platform/

5http://www.corp.att.com/attlabs/reputation/timeline/01hmihy.html

3

and both can operate at several scales. In the follow-
ing part I will focus on the analysis side.

Audio Signal

Audio Features Audio Features

Phones

Word

Intent Answer

Word

Phones

Dialog Engine

TTS
ASR

NLU

Text
To

Speech
Automatic

Speech
Recognition

Natural
Language

Understanding

DM
Dialogue

Management

Figure 2: Overview of the Speech and Language Tech-
nologies. The left-hand part is speech analysis and
the right-hand part is speech synthesis.

There are two main steps in speech analysis, namely
Automated Speech Recognition (ASR) and Natural
Language Understanding (NLU). The Subsection 3.1
presents briefly NLU and then the Subsection 3.2
presents ASR, which is what I worked on, in more
details.

3.1 Natural Language Understanding

The role of NLU is to extract the user intent from
a text. Sentences are parsed into semantic represen-
tations. Although it can be helped with additional
information provided by the speech analysis such as
word prominence, it does not assume that the text
comes from speech and is hence trained separately.

The practical challenges are to be able to handle the
multiple ambiguities of the natural language as well
as the out-of-vocabulary words that can occur. Fur-
thermore, a natural language grammar is too complex
to be fully hand-crafted and rule-based system are at
least helped unless replaced by learned models.

But a more fundamental issue is also the way to
represent semantics and many different theories has
been explored by linguistic and computing sciences.

It can be applied to a wide range of problems, like text
summarizing, semantic search, and of course virtual
assistants and chat bots.

3.2 Automatic Speech Recognition

ASR operates at the very lower level, taking the raw
audio signal as input, and writing a transcript for it,
which is basically a sequence of word.

Note that we could consider an augmented definition
of word that embed additional information extracted
from the audio signal like word prominence or emo-
tion6. It may then be useful for the NLU.

In a more formal way, let us consider the input utter-
ance of speech S. The ASR task is then to determine
the word W ∗ that is the more likely to be the tran-
script of S:

W ∗ = argmax
W

P (W |S) (1)

The later probability is hard to determine by itself,
so it is decomposed using Bayes’ law:

P (W |S) = P (S|W)P (W)
P (S) (2)

The quantity we are now looking for are easier to
handle.

3.2.1 Language Model

P (W) is the probability that the wordW occurs. The
most simple way to model it would be to measure the
word statistics over a dataset. But more advanced
methods are generally used, where the context is taken
into account to influence the probability, using learned
or rule-based grammars.

6{reference needed}

4

The model can hence be represented as a probabilistic
automaton, a.k.a. Weighted Finite State Acceptor
(Mohri, Pereira, and Riley 2002) where the transitions
are labeled with words and weighted with probabilities,
as shown by the example in Figure 3.

fun

boring

isNew York

Paris/0.5

/0.5 /1.0 /0.9

/0.1

Figure 3: Example of minimalistic language model.
When the speech recognizer is in a given state, the
model gives a probability of hearing a word and the
new internal state in which this operation would lead
the recognizer to. Transition with null weight are not
represented.

3.2.2 Acoustic Model

P (S|W) would be the probability of hearing the signal
S if we knew that the word that the speaker intended
to pronounce was W .

This translation from words to sounds is mod-
eled though atomic speech units called phones (See
(Livescu, Fosler-Lussier, and Metze 2012) for a sur-
vey of sub-word models). The sequence of words is
converted into a sequence of phones using a pronun-
ciation dictionary, and the emission of audio signal
from phones is modeled as a Hidden Markov Model
(HMM).

3.2.2.1 Pronunciation Dictionary The pro-
nunciation dictionary specifies one or many pronuncia-
tions for each word (See Figure 4). It can be generated
from the spelling using specific rules in a first step and
then be bootstrapped to learn refined pronunciations
from the training set.

Typically, the number of phones is around 30 to 100 for
English, and they should be invariant to the presence
of background noise and the properties of the voice
like its pitch.

aware...... ax w ey r
awareness.. ax w ey r n ih s
away....... ax w ey
awe........ ao
awesome.... ao s ax m
awful...... ao f ax l
awfully.... ao f ax l iy
awfulness.. ao f ax l n ih s

Figure 4: Extract of the pronunciation dictionary
provided with Switchboard corpus. The phones are
represented by short names close to how they sound.
Note that we have here only one pronunciation per
word.

As well as for the LM, the AM dictionary fits well
into the framework of Finite State Transducers (FST)
(Mohri, Pereira, and Riley 2002). This provides a way
to reflect the multiplicity of pronunciations of a word
and its probabilities and also enable the possibility to
compose AM and LM into a single FST to improve
the decoding speed (See Section 3.2.4).

The whole model can hence be represented as a single
FST along with the GMM of DNN used for emission
prediction.

3.2.2.2 Hidden Markov Model Given this pho-
netic dictionary, the generation of speech can be mod-
eled as a Hidden Markov Model (HMM), as shown
in Figure 5. This reflects the fact that we cannot
measure the phones themselves but an audio signal
– which are phenomena resulting from those phones
being pronounced – that a given observable speech
frame is likely to be caused by several phones.

In fact, some refinement of the phone decomposition is
performed. A phone is still of a higher level than the
emitted sound and so sub-phone states are actually
used (see Figure 6).

Furthermore, the emission is modeled using context
phones since the actual pronunciation of a phone
usually depends on the phones pronounced before and
after it. The number of HMM state is then so high
that they need to be grouped by similarities, using
decision trees (Young, Odell, and Woodland 1994).

Self-loops are finally added to each state of the FST

5

ax w ey r

Emmitted sound features

Figure 5: Extract of HMM. The dots are hidden
states labeled with phones. The arrows represent
the possible sequences of phones (here the dictionary
contains only one word). The feature bands bellow
correspond to the same color hidden state and roughly
represent the continuous emission of the states

ax1 ax2 ax3 w1 w2 w3 ey1 ey2 ey3 r1 r2 r3

Figure 6: Decomposition of phones into phone states
on a simple example.

resulting of all those techniques to encode the differ-
ence of time scale between the sequence of phones and
the sequence of speech frames.

3.2.2.3 Emission Probabilities Distribution
Functions We need, to complete this model, a mea-
sure of the probability that a given frame has been
emitted by a given phone. This is particularly difficult
since the emission is a continuous signal and so each
phone has its own continuous Probability Distribution
Function (PDF) defining what it emits.
During a long time, the state-of-the-art7 model used to
define the PDFs of HMM states emission was Gaussian
Mixture Model (GMM). The probability that a state
s emit a feature vector X is the weighted sum of
covariant Gaussians:

P (X|s) =
M∑

k=1
αksN (X,µk, σks) (3)

7{reference needed}

where α, µ and σ are learned parameters.

The new state-of-the-art speech recognition systems
now use Deep Neural Network. A neural network fed
with the feature vectors and outputting the current
HMM state. See (G. Hinton et al. 2012) for an
history and reflection about this evolution. For more
information about DNNs, see Section 4.

Another method that still gives good result is the
joint use of GMM and DNN, training the GMM on
the output of a DNN (Hermansky, Ellis, and Sharma
2000).

3.2.3 Prior probability

Note that P (S) is supposed to be constant, which
means that any sound signal is equally likely to hap-
pen. This is a reasonable assumption given that the
input signal is actually provided as normalized fea-
tures.

Those features also provide more invariance to the
speaker, the presence of noise, etc. A lot of different
types of features have been investigated (Dimitriadis,
Maragos, and Potamianos 2005), but the use of DNNs
led some people to even completely get rid of the fea-
ture engineering (Deng et al. 2010), considering that
the first layers of the network have already learned
the best features.

3.2.4 Decoding

The input of the ASR task is a sequence of speech
frame, so a sequence of HMM’s emission states. The
determination of the sequence of hidden states that
is the most likely to have generated those emissions
is known as HMM decoding and is performed using
the Viterbi algorithm (Viterbi 1967).

The result is a sequence of HMM states then con-
verted. Since those states result from the composition
of the previous FSTs (Language Model, Pronunciation
dictionary), it then output a sequence of words.

Finally, the main challenges of ASR are improving the
accuracy, reducing the training time and increasing

6

the runtime speed.

4 Deep Neural Networks

Neural Networks, lately refurbished under the name
of Deep Learning, are a very generic Machine Learn-
ing modeling tool that is widely used, especially on
tasks that used to be known as signal processing, re-
placing heavy feature engineering work. And speech
processing is one of them.

While inspired by and named after a model of real
neuron interactions, a neural network has to remain a
useful computing tool and a tractable mathematical
object.

Its definition is very general since it is more a frame-
work than a single object and a lot of variants can be
found.

4.1 General Definition

A neural network is an acyclic weighted oriented graph
N , where a node n is called neuron, or unit, and is
associated a activation function fn.

A network also defines a subset of neurons as the
input layer I and another one is the output layer
O. The term layer comes from the typical network
architectures.

4.1.1 Running

Running a neural network N on an input valuation
X = (Xn, n ∈ I) is the operation consisting in as-
sociating to each neuron n a scalar value an called
activity by applying recursively the following rules:

• If n ∈ I, then an = Xn

• If not, an is defined by the sources i1, . . . , ik of
the connections of N whose n is a destination,
also known as n’s input units, and the respective
weights of those connections wni1 , . . . , wnik

by:

an = fn(wni1 , ai1 , . . . , wnik
, aik

) (4)

Note that in a vast majority of cases, (4) can be
written as follow:

an = fn(
k∑

j=1
wnij

aij
) (5)

Thus an output valuation Y = (an, n ∈ O) is defined.

4.1.2 Learning

The network without its weights is described statically
and considered as an input. On the contrary, the
weights are determined during a training step.

This is why although weights could be included into
the fn functions, they are not. This is to clearly dis-
tinguish static parameters from learned parameters.

The unweighted network, along with the training con-
straints, form the architecture of the network.

4.2 A more practical definition

While this definition is theoretically interesting, the
practical representation of neural networks does not
strictly reflect it. Both running and learning actually
require the network to be topologically sorted to be
efficient, since computing the valuation of a node relies
on the valuation of its inputs.

Hence, they are grouped by topological distance to the
network inputs (See Figure 7). Such groups are called
layers (Ln)n. We can, without loss of generality in the
functions X 7→ Y defined by the running operation,
assume that all the inputs of a given node are in the
same layer (if not, it is easy to add identity nodes in
between).

The layer representation is very powerful since it en-
ables to compute all the sums

∑k
j=1 wnij

aij
in (5)

7

1

2

3

6

4

5

1 2

54

6

3

Figure 7: Equivalent representations of a neural
network. The right-hand one is more computation-
friendly although it contains one more node not to
break the layer representation.

of a given layer Ln at the same time. They are in-
deed the results of the product of the weight ma-
trix Wn = (wij , i ∈ Ln−1, j ∈ Ln) by the activities
(ai, i ∈ Ln−1) of the layer n− 1.

This way, any linear algebra tool can be used to com-
pute or analyze a neural network.

4.3 Typical architectures building
blocks

Given this second definition of a network, it is conve-
nient to describe an architecture by its layers.

4.3.1 Activation Function

An important parameter of a layer is the activation
function of its units. It is worth noting that if this
function is the identity, the weight matrices can be
composed and the network is thus always equivalent
to a single layer network. This is why the activation
function is sometimes called non-linearity and is at
the core of the power of representation of the networks.
See Firgure 8 for examples.

A common interpretation of the way a DNN trans-
forms a signal is that the activation of each layer is a
higher-level non-linear representation of the previous
one. Then the more layers the more abstraction can
be encoded and learned.

Sigmoid ReLUTanh

Figure 8: The most used non linearities are the logistic
sigmoid (σ(x) = 1

1+e−x), the hyperbolic tangent and,
more recently, the Rectified Linear Units, defined by
ReLU(x) = max(0, x) (Nair and Hinton 2010)

The most basic network architecture is made of a
sequence of layers where all the units have the same
activation function, and all the hidden layers (layers
which are neither input nor output) have the same
size.

A different activation function can be used for the
output layer. For instance, estimating the current
hidden state of the ASR HMM requires to output
probability (their logarithm, in fact), since the Viterbi
algorithm actually explores many solutions, and so
there is a need for a normalization.

Other applications such as extraction of bottleneck
features requires an output distribution that is incom-
patible with the statistical behavior of the ReLU.

4.3.2 Weight sharing

Constraints can be applied to the space in which
weights are picked. The most simple kind of constraint
is weight sharing, which means that two or more
connections can learn the same weight. It is mainly
motivated by the need to ensure some invariance of
the data processing.

Of course, the learning algorithm must be able to
handle those constraints. In the common case of learn-
ing by gradient descent, weight sharing is performed
by summing or averaging the error backpropagated
though each connection. Generally, sharing weights
reduces the number of parameters and hence eases
the learning, although it does not improves runtime
speed.

8

The main application of weight sharing is the Convolu-
tional Neural Networks (CNN) (See Subsection 4.3.3).

It can also be a way to represent unfolded Recurrent
Neural Networks (RNN) (See Subsection 4.3.4).

4.3.3 Convolutional Neural Networks

A convolutional layer behaves as if the same small
network was applied locally, on a windows sliding over
all the input which hence needs to be provided some
geometrical organization. See Figure 9

Convolution of

Max Pooling

Figure 9: Illustration of a CNN. The colors on the
connections represent the weight sharing. The second
layer is a max pooling (Zhang et al. 2014) where
the units get the maximum activation of their inputs.
This is widely used with convolutional layers to ensure
some invariance and subsample the data.

The idea of the CNN is to build a set of representations
of the input which is invariant to the geometrical
dimensions. It is especially useful when analyzing
images since we need to recognize an object wherever
it is on the image. Those applications have been
used in the last state-of-the-art image classifiers like
(Szegedy et al. 2014).

CNNs have also been applied on video (3D signal) or
speech. In the case of speech, the convolution can be
either applied on the temporal dimension only or on
both temporal and spectral dimensions (Abdel-Hamid
et al. 2012) (Saon et al. 2015).

Any sequential input can benefit of the robustness of
CNN, even the discrete signal used in NLU (words or
characters) (Kalchbrenner, Grefenstette, and Blunsom
2014) (Zhang and LeCun 2015).

Another advantage of CNNs is that they can benefit
very efficiently from the hardware primitives imple-

mented in common GPUs (Vasilache et al. 2014).
This can be used both for training and runtime.

4.3.4 Recurrent Neural Networks

RNNs add to DNNs a whole new capability: memory.
While a CNN learns invariant filters to apply at any
point of the input signal, the RNN do the opposite by
letting the whole network having a different behavior
at any time.

The architecture of a RNN is not different from the
one of a DNN, except that along with its usual input
– the one provided by the training set and then by the
runtime – the RNN is also fed with some part of the
output of the previous run of itself.

Those new inputs and outputs are unsupervised and
can be considered as some kind of memory. The
main drawback is that the training must also learn
this memory, and so generally need to perform the
backpropagation through time (Werbos 1990).

RNNs provide a unique a way to handle varying size
sequential inputs, as speech, textual or handwritten
sentences. A challenge that RNNs does not solve by
themselves is to map sequences of different size, like a
speech utterance to its transcript. Additional methods
has been developed like the CTC (Graves et al. 2006),
used for ASR in (Hannun et al. 2014), then general-
ized as RNN transducer [Graves12]. Other methods
include attention-based mechanism (Chorowski et al.
2014) or sentence embedding (Palangi et al. 2015),
especially for translation.

RNNs also gave interesting results on sequence gener-
ation, using networks with no input but the recurrent
state (Graves 2013).

A known issue of the training of such networks is
the problem of vanishing gradient (Bengio, Simard,
and Frasconi 1994). After some iterations of the
backpropagation through time, the meaning of the
gradient fades out and as a result the RNN is unable
to learn long term dependencies.

The design of LSTMs (Hochreiter and Schmidhuber
1997) makes RNNs more robust by modeling a gate

9

system preventing the contributions of the gradient at
steps where a memory has not been used. Other work
like RNNs running at multiple timescales (Koutník et
al. 2014) or Memory Networks (Weston, Chopra, and
Bordes 2014) have also been recently presented.

Finally, RNNs can actually be applied on any recur-
sive structure, such as syntactic trees (Tai, Socher,
and Manning 2015). Any recurrent constructor of
the structure on which the RNN is applied can use
different weights as soon as it uses the same number
of memory units.

4.4 Training Method

Another very important choice in the use of DNNs is
the method used to train their weights. Basically, all
the state-of-the-art methods more or less use Stochas-
tic Gradient Descent (SGD), given some variations.

The efficiency of the SGD highly relies on the choice
of some hyper-parameters and notably the learning
rate. Tunning the learning rate is still an art that
require intuition (Glorot and Bengio 2010). (Senior
et al. 2013) even present an “empirical study” about
it, while (Bottou 2012) published a list of tricks and
recipes.

Many attempts to reduce the sensibility of hyper-
parameters like Adagrad (Duchi, Hazan, and Singer
2011) or Adadelta (Zeiler 2012) have been investi-
gated.

In order to help the convergence, layerwise unsuper-
vised pretraining can be used (Bengio et al. 2007) or
momentum (Sutskever et al. 2013) can be added to
the SGD. The preparation of training data is also im-
portant, from utterance order randomization to more
advanced methods like batch normalization (Ioffe and
Szegedy 2015).

Some other tricks can avoid overfitting, like weight
decay or dropout (Hinton et al. 2012).

To conclude, tunning a DNN is more or less an art
and the efficiency of the diverse tricks depends on the
application, the dataset, the architecture, etc. For a

more exhaustive presentation, see (Bengio, Goodfel-
low, and Courville 2015).

5 Research tools and imple-
mentations

As DNN training and designing is hard to study in a
purely theoretical way, finding a flexible framework
to run experimentations is worth spending some time
on it.

Furthermore, the team was not stick to a given tool
so I had the liberty to chose the one I felt the most
comfortable with. This choice takes into account the
efficiency (save machine time), the flexibility (save
human time) and also the community behind a tool.
Working with the same tools as other researchers is
useful to directly share work and experiment other
people ideas.

5.1 DNN tools

The two leading open source tools for Deep Learning
are Theano (Bergstra et al. 2010) and Torch. Succes-
sive benchmarks have reported similar performances,
so the choice is more about the comfort of use, which
might be different for different persons.

I believe that comparing Theano and Torch is sim-
ilar to comparing respectively the theoretical and
the practical definitions of neural networks given in
sections 4.1 and 4.2. They are almost equivalent,
but provide two different points of view, with their
strengths and weaknesses.

Theano is entirely built around the idea of computa-
tion graphs and is actually quite agnostic to the idea
of neural network if used alone. It provides powerful
tools to prune, factorize and compile such graphs,
either on CPU or GPU.

On the other hand, Torch is designed as a lightweight
but complete numerical computing library using trans-
parently CPU and GPU and providing a wide range

10

of models of DNN layers and a set of training opti-
mization algorithms.

On a more technical side, Theano is a Python library
and Torch a Lua package. The Python library can
benefit from the huge Python community and the
tools it developed. Lua provides a light C interface
that makes it very easy to integrate models built in
experimentations into a production system.

Furthermore, Torch does not need the graph com-
pilation step used by Theano. This step can be a
source of many architecture specific issues, obscure er-
ror messages not caught by Python, and compilation
latency.

Both tools have a serious base of users. Torch is
highly used and even maintained by companies like
Facebook, Google or Twitter. Theano is maintained
by a lot of academic contributors, especially from Y.
Bengio’s laboratory at Université de Montréal.

Although I tried both, the majority of my experiments
have been driven using Torch.

5.2 ASR tools

Talking about tools, it is also interesting to present
the Automatic Speech Recognition tools, although
the main one I worked on is not Open Source and so
I cannot give any detail about it.

But there is an Open Source reference for ASR that
I have also looked at and which is developed by aca-
demics, called Kaldi (Povey et al. 2011). This pro-
vides a complete ASR pipeline reported to be close to
or even beat the state-of-the-art (Vesely et al. 2013)
(Povey, Zhang, and Khudanpur 2014) and has been
designed to be easily modified for research purpose.

The private tool I worked on is called Watson and is
the product of the work of the team during several
decades. Some lines of code are even older than I
am! It has been used in production for a long time
by AT&T and now Interactions with successful re-
sults. Public information about Watson has been
communicated through research papers such as (Boc-

chieri, Caseiro, and Dimitriadis 2011) or (Dimitriadis,
Bocchieri, and Caseiro 2011).

There are of course other existing tools, but here are
the one I have had the occasion to work with.

6 Personal work and contribu-
tions

6.1 MNIST

As shown in Section 4, designing and tunning DNNs
for a given task is an art that requires some intuition
about the behavior of the different theoretical tools
available.

Facing this huge exploration space, I needed to ex-
periment the basic ideas on a dataset of manageable
size. Thus, it was possible to test models in a reason-
able amount of time and so to test a lot of models
(hundreds).

This is why I did all my first experiment of the MNIST
dataset (see Figure 10). This is a set of 60,000 hand-
written digits on which a lot of state-of-the-art meth-
ods has been applied, providing reference baselines8.

Figure 10: Sample of MNSIT inputs

The task associated to this dataset is to classify those
images into 10 classes corresponding to the 10 decimal
digits. This made me understand better the DNNs,
and the optimization algorithms used to train them.

This was also an occasion to practice Machine Learn-
ing in general, learning to recognize overfitting or to
use validation sets, etc.

8http://yann.lecun.com/exdb/mnist/

11

6.2 DNN training parallelization

Beside this practical approach to Deep Learning, I did
some reading and preliminary work about the main
problematic of my internship: speeding up the DNN
training by parallelizing it over many machines.

6.2.1 Initial Problem

As for any time consuming task, it is tempting to
run its different components at the same time, on
different machines. But this requires the system to be
separated into components that does not communicate
too much. Indeed, the time won by parallelization
can easily be lost in term of communication latency.
The usual training of neural network addresses two
problems to parallelization.

The first one is that all the units communicate very
often and with too many other units, so distributing
a given network over many machines is difficult.

The second issue is that even if the network is trained
by batches of data and so updated only every 256 in-
puts (for instance), the time required to communicate
the updated weights is not negligible compared with
the time spent computing it.

On the other hand, given that a network accuracy
increases with the size of the dataset, and that there
are indeed big datasets available, the training is really
time consuming, even using GPUs whose memory can
be limited.

6.2.2 Existing solutions

Distributing the usual algorithms “as is”, without
any fundamental modification, is impossible, or not
efficient. What we need is to modify the learning
more deeply so that several machines could train on
their own while synchronizing less often.

Heavy software infrastructures have been developed,
like for instance Google’s DistBelief (Dean et al. 2012)
which relies on an asynchronous parameter server and
the distribution of both data and units. But this is

more useful to train bigger models than to train them
faster.

A more fundamental way to parallelize the training
would be to find an efficient way to combine networks
with the same architecture but trained on different
data into a new network, better than any of the initial
ones.

This idea is explored by (Povey, Zhang, and Khudan-
pur 2014). The reduction step is simply an averaging
of the weights across the many parallel models, but
the first results are not good. This becomes to be
efficient when the training uses a different training
method known as Natural Gradient. The results on
the implementation provided in Kaldi are promising,
although this does not scale well beyond 4 parallel
machines, but those results are essentially empirical
and require further investigation.

6.2.3 Theoretical intuition

The first step is to understand why the basic weight
averaging does not work. As for a lot of theoretical
Machine Learning problems, studying the trajectory
of an error rate in a very general way is challenging,
but a possible understanding relies in the unsupervised
specialization of the units.

As shown by 11, the parallel jobs of the same training
can lead to very different models. Indeed, although
the inputs and outputs of the network are imposed,
the choice of the role of hidden units is left to the
initiative of the learning algorithm because many of
them have a symmetric description.

As a consequence, averaging the weights of the units
means mixing the properties of classifiers that do not
aim at recognizing the same patterns!

6.2.4 Natural Gradient

The natural gradient can be considered as a way to
prevent the units from changing their role (Fukumizu
and Amari 2000). It makes the critical points of the
parameters space where two units switch their roles

12

Initial Model

Training 2Training 1

Figure 11: Problem of the unsupervised unit special-
ization. Many trainings of the same architecture can
lead to very different self-organization of the hidden
units.

more repulsive than with a standard SGD. So once
those roles have been assigned, for instance by the
first iterations of training, the natural gradient can
be used for parallelization.

A reason for this improved robustness is that natural
gradient is a second-order method while the standard
SGD is a first order method. Note that in a more
practical point of view, D. Povey presents this to
deep learners as a way to apply an adapted learning
rate at each unit, while a machine learner calls it a
second-order method. These are two valuable points
of view.

The main reason why natural gradient is not as ef-
ficient in practice is that it cannot be implemented
exactly. The amount computation it theoretically re-
quires is way too large, as it is in O(n3) with a number
n of neurons typically around 10,000, wile the SGD
is about O(n2).

Natural Gradient can be approximated by algorithms
of backpropagation with hessian-free second order
SGD (Pearlmutter 1994) (Martens 2010), and strong
theoretical work on their application to neural network
has been explored (Ollivier 2013) (Pascanu and Bengio
2013), even very recently (Martens and Grosse 2015).

But considering the considerable effort to implement
it, I first explored another simpler idea for paralleliza-

tion: Feedback Alignment (FA).

6.2.5 Feedback Alignment

Addressing the problem of constraining the unsuper-
vised hidden units specialization, using for instance
target propagation (Bengio 2014), my advisor found
the work of (Lillicrap et al. 2014) on what is pre-
sented as a potentially more biologically plausible way
to train a neural network.

6.2.5.1 Motivations and parallelization The
basic idea of FA is presented in Figure 12. It has
originally not been developed for parallelization, but
as a more realistic learning algorithm, given that the
usual backpropagation is very likely to not be how
the human brain works.

W1

W2

W1

W2

T

T

B1

B2

Figure 12: Feedback Alignment: Instead of backprop-
agating the output error using the transposed weight
matrix, a random matrix B is used. This feedback
matrix remains the same during all the training.

Here the backpropagation is highly influenced by the
feedback matrix B. The guess was that this matrix
somehow assigns a role to the units and hence training
several models in parallel with the same feedback
matrix should lead to very similar networks.

6.2.5.2 Reproduction of the results As it was
a relatively new and unknown method, FA had no
released public implementation. The first step was
hence to implement it – which I did using Torch – and
reproduce the article’s result.

13

The presented results happen to be on the MNSIT
dataset, but the backpropagation baseline they com-
pare FA to is actually not the state of the art. Al-
though I have been able to reproduce the result about
FA, it is still less accurate than a traditional back-
propagation (1.7% of error vs 1.5% while the paper
reports 2.4%).

6.2.5.3 Further investigation Anyway, I con-
tinued investigating the FA since the results remain
good for such a simplification of the learning algo-
rithm.

I explored variants for the random drawing of the feed-
back matrix. Lillicrap draws B uniformly in [−1, 1].
Noticing that the sign of the forward weights pro-
gressively aligns to the sign of the feedback weights
during the training, I assumed that only the sign was
important and used {−1, 1} instead, leading to similar
results. I even changed the proportion of 1s and −1s
and even a repartition of 10-90 percents works.

This idea of caring about the sign of the error only
led me to try another variant then called Discrete
Backpropagation in which the feedback matrix is build
using only the sign of the forward weights. This gives
intermediate results, between usual backpropagation
and FA.

6.2.5.4 Application to parallelization Finally,
I tried to apply FA to parallelization, which was the
original goal, but unfortunately it did not succeed.
Freezing the feedback does not seem to assign a precise
role to the units.

This result is actually still very interesting since it
might show that the role is essentially determined dur-
ing the forward pass. This means that the units chose
their role quite independently, given the representa-
tion made available by the previous layer, instead of
requesting a given role to its inputs during the error
backpropagation.

However, I then turned to the application of my new
expertise in DNN tunning to ASR as it is what the
team develop.

6.3 Experiments on ASR

6.3.1 Bootstrapping

The DNN in ASR associates to each frame of typically
10ms of sound a distribution of the probability to be
in a given hidden state of the HMM. In fact, it uses
a sliding window of several 10ms frames as input (11
frames in my case).

This means that the training data must provide a
target state, or label, for each frame. But such dataset
is highly dependent on the architecture of the HMM.
Moreover, a dataset as the one I used contained mil-
lions of frames, so no human can afford labeling it
manually.

Instead, a prior AM is used to provide an initial
labeling, bootstrapping the learning process.

6.3.2 Transition from MNIST

The nature of the input, as well as the targets, is very
different from MNIST task, and so some tricks that
do well for the later might not work for the former.

For instance, the number of outputs for ASR is several
thousands, and sometimes even close to 20,000. While
the output layer is almost negligible with MNIST, it
takes an important part of the computation. This
makes method applicable only to the last layers worth-
while.

However, the experiments on MNIST where impor-
tant to provide me a sensibility that is useful for the
tunning of any DNN. DNN training for ASR takes
more time and so allow less dummy exploration. My
own learning of DNN tunning as somehow been boot-
strapped as well!

6.3.3 Usual datasets

Dataset are of a critical importance. Their quality and
relevance have a huge impact on the resulting models.
They are also a way to confront to the published
results.

14

Another interest in using common datasets is that
their transcripts are regularly improved and enriched
with other metadata such as speaker informations.

Among the most used datasets in publications are
DARPA’s Resource Management and TIMIT, Wall
Street Journal, and Switchboard. Switchboard is
the biggest and maybe the most used in the last
publications. Hence the more challenging.

But the team have also access to other data from
its previous work and collaboration, and thanks to
Interactions’ Adaptive-Understanding. Those data
eventually fit better the final application of the sys-
tem developed and their diversity makes them more
challenging.

I used for a majority of my experimentations a dataset
designed to be at the same time of e reasonable size
(74,000 sentences, typically 8 hours of training per
model) and diversified enough to reflect the complexity
of bigger datasets used in production. This way, a
method successful for this dataset is likely to scale
well to production ones.

I also lately used Switchboard to get comparison with
published results.

6.3.4 Label and Word accuracy

I initially ran experiments as a pure machine learner,
evaluating the accuracy of my models on a test set
of the same nature as the training set, i.e. a set of
speech frames and associated labels.

But those labels are actually not an absolute informa-
tion since they have been produced by another model.
The measured accuracy was hence more a measure of
discrepancy between two models.

To really get an idea of the accuracy of the model,
it has to be evaluated in a pipeline that outputs
data comparable with the provided with the original
dataset, namely text transcripts. This leads us to
the word accuracy – or its complementary, the Word
Error Rate (WER).

6.3.5 Decoding

Measuring the WER requires to run the decoder on
the output of the DNN. The decoder also high sensi-
tivity to its hyper-parameters, especially in the com-
bination of AM and LM whose provided probabilities
can be exponentially scaled or floored for instance.

So for all the models that performed well on label
accuracy, I had to run the decoder many times (10
to 100 times) to find the best decoding parameters
(simply by grid-searching).

The fact of using a different measure of error to train
and evaluate models can be disturbing, but backprop-
agating error through the Viterbi decoder is not an
easy task, especially given the optimizations it can
use like pruning of underused arcs. This problem can
be solved by using sequential training as it is the case
in some of Kaldi’s recipes (Vesely et al. 2013).

6.3.6 Subsampling

Given that I had to run the decoder a lot, I investi-
gated the tricks used to speed it up. There can be
about the implementation of the Viterbi decoding
itself, but other interesting ideas can be found. DNN
subsampling is one of them (Vanhoucke, Devin, and
Heigold 2013).

Instead of running the decoder for each time step,
and so every 10ms in our case, a subsampled network
generates for a given input window of frames two
labels. One for the current frame, and one for the
next frame. Actually the original paper outputs up
to 4 frames at the same time.

This gave me results close to the traditional pipeline
while being faster to compute. I obtained word accu-
racy of 74.5%, and then 75.3% using the S method
(See Subsection 6.3.7), versus 76.5% for the traditional
model.

Note that the larger the output is, the less the sub-
sampling is efficient.

15

model word accuracy
RNN-S 76.4%
RNN 76.8%
SUB-S 75.3%
SUB 74.5%
DNN-S 76.4%
DNN 76.5%

Table 1: Examples of results obtained for speech
recognition on our custom dataset. The models whose
name ends with a "-S" have been trained using the S
method.

6.3.7 S method

Still worried about the training time, I designed and
tested a new training method. Unfortunately, this is
currently being patented and patent process is not as
flexible as scientific publication regarding disclosure,
which means I am unable to provide a preprint version.
Hence the obscure designation of S method used in
this report.

This method divided the training time by a factor
of more than 3.5 on our training set and is being
tested on Switchboard for a more comparable result.
Furthermore, the consequences of this method on the
word accuracy are small and sometimes beneficial!
Some key results are presented in Table 1.

6.4 Comparison of Kaldi and Watson

As an open source tool, Kaldi benefits from the contri-
butions of a wider audience. It hence provides training
algorithms that Watson does not. But Watson has
been especially optimized for runtime as it is used in
commercial product that requires reactivity and low
latency.

Looking at Kaldi is a way to test some methods to see
if it is worth implementing it in Watson. And reading
two implementation of very similar pipelines has been
really helpful for my understanding of those tools.

7 Conclusion

The experience provided by this internship has been
incredibly instructive. In a nutshell, almost all what
is presented in this document has been learned during
the internship.

I discovered the full and complex pipeline of ASR,
and it get me experimented about DNNs, which can
be used in a lot of research fields. Working on several
subproblems gave me a very valuable overview.

I had the occasion to meet people working on a wide
range since the team has been developing jointly all
the components of the Speech and Language Tech-
nologies for a long time.

Interactions has built an effective business model
around speech technologies that are difficult to use as
a standalone tool. This gives a great opportunity to
be able to do research and see a direct application.

Furthermore, the organization was quite unique since
I lived the spinning-off of the team from AT&T and
its move to Interactions, which is a very interesting
step.

Not to mention that living and working in the US
for many months, and especially in New York City,
dramatically improved my English skills and was a
very nice experience!

Acknowledgment

I wish to thank the whole team, for its patience and
for making me feel useful and enjoying my work. I
especially thank Patrick Haffner, my advisor who have
closely and wisely followed and steered my researches
(and reviewed this report).

Bibliography

Abdel-Hamid, Ossama, Abdel-rahman Mohamed, Hui
Jiang, and Gerald Penn. 2012. “Applying Convolu-
tional Neural Networks Concepts to Hybrid NN-HMM
Model for Speech Recognition.” In Acoustics, Speech

16

and Signal Processing (ICASSP), 2012 IEEE Inter-
national Conference on, 4277–80. IEEE.

Bengio, Yoshua. 2014. “How Auto-Encoders Could
Provide Credit Assignment in Deep Networks via Tar-
get Propagation.” ArXiv Preprint ArXiv:1407.7906.

Bengio, Yoshua, Ian J. Goodfellow, and Aaron
Courville. 2015. “Deep Learning.” http://www.iro.
umontreal.ca/~bengioy/dlbook.

Bengio, Yoshua, Pascal Lamblin, Dan Popovici, Hugo
Larochelle, and others. 2007. “Greedy Layer-Wise
Training of Deep Networks.” Advances in Neural
Information Processing Systems 19. MIT; 1998: 153.

Bengio, Yoshua, Patrice Simard, and Paolo Frasconi.
1994. “Learning Long-Term Dependencies with Gra-
dient Descent Is Difficult.” Neural Networks, IEEE
Transactions on 5 (2). IEEE: 157–66.

Bergstra, James, Olivier Breuleux, Frédéric Bastien,
Pascal Lamblin, Razvan Pascanu, Guillaume Des-
jardins, Joseph Turian, David Warde-Farley, and
Yoshua Bengio. 2010. “Theano: A CPU and GPU
Math Expression Compiler.” In Proceedings of the
Python for Scientific Computing Conference (SciPy),
4:3. Austin, TX.

Bocchieri, Enrico, Diamantino Caseiro, and Dimitrios
Dimitriadis. 2011. “Speech Recognition Modeling
Advances for Mobile Voice Search.” In Acoustics,
Speech and Signal Processing (ICASSP), 2011 IEEE
International Conference on, 4888–91. IEEE.

Bottou, Léon. 2012. “Stochastic Gradient Descent
Tricks.” In Neural Networks: Tricks of the Trade,
421–36. Springer.

Chorowski, Jan, Dzmitry Bahdanau, Kyunghyun Cho,
and Yoshua Bengio. 2014. “End-to-End Continuous
Speech Recognition Using Attention-Based Recurrent
NN: First Results.” ArXiv Preprint ArXiv:1412.1602.

Dean, Jeffrey, Greg Corrado, Rajat Monga, Kai Chen,
Matthieu Devin, Mark Mao, Marc aurelio Ranzato,
et al. 2012. “Large Scale Distributed Deep Net-
works.” In Advances in Neural Information Process-
ing Systems 25, edited by F. Pereira, C.J.C. Burges,

L. Bottou, and K.Q. Weinberger, 1223–31. Cur-
ran Associates, Inc. http://papers.nips.cc/paper/
4687-large-scale-distributed-deep-networks.pdf.
Deng, Li, Michael L Seltzer, Dong Yu, Alex Acero,
Abdel-rahman Mohamed, and Geoffrey E Hinton.
2010. “Binary Coding of Speech Spectrograms Us-
ing a Deep Auto-Encoder.” In Interspeech, 1692–95.
Citeseer.
Dimitriadis, Dimitrios, Enrico Bocchieri, and Dia-
mantino Caseiro. 2011. “An Alternative Front-End
for the AT&T WATSON LV-CSR System.” In Acous-
tics, Speech and Signal Processing (ICASSP), 2011
IEEE International Conference on, 4488–91. IEEE.
Dimitriadis, Dimitrios, Petros Maragos, and Alexan-
dros Potamianos. 2005. “Robust AM-FM Features
for Speech Recognition.” Signal Processing Letters,
IEEE 12 (9). IEEE: 621–24.
Duchi, John, Elad Hazan, and Yoram Singer. 2011.
“Adaptive Subgradient Methods for Online Learning
and Stochastic Optimization.” The Journal of Ma-
chine Learning Research 12. JMLR. org: 2121–59.
Fukumizu, Kenji, and Shun-ichi Amari. 2000. “Lo-
cal Minima and Plateaus in Hierarchical Structures
of Multilayer Perceptrons.” Neural Networks 13 (3).
Elsevier: 317–27.
Glorot, Xavier, and Yoshua Bengio. 2010. “Under-
standing the Difficulty of Training Deep Feedforward
Neural Networks.” In International Conference on
Artificial Intelligence and Statistics, 249–56.
Graves, Alex. 2013. “Generating Sequences
with Recurrent Neural Networks.” ArXiv Preprint
ArXiv:1308.0850.
Graves, Alex, Santiago Fernández, Faustino Gomez,
and Jürgen Schmidhuber. 2006. “Connectionist Tem-
poral Classification: Labelling Unsegmented Sequence
Data with Recurrent Neural Networks.” In Proceed-
ings of the 23rd International Conference on Machine
Learning, 369–76. ACM.
Hannun, Awni, Carl Case, Jared Casper, Bryan Catan-
zaro, Greg Diamos, Erich Elsen, Ryan Prenger, et al.
2014. “DeepSpeech: Scaling up End-to-End Speech
Recognition.” ArXiv Preprint ArXiv:1412.5567.

17

http://www.iro.umontreal.ca/~bengioy/dlbook
http://www.iro.umontreal.ca/~bengioy/dlbook
http://papers.nips.cc/paper/4687-large-scale-distributed-deep-networks.pdf
http://papers.nips.cc/paper/4687-large-scale-distributed-deep-networks.pdf

Hermansky, Hynek, Daniel W Ellis, and Shantanu
Sharma. 2000. “Tandem Connectionist Feature Ex-
traction for Conventional HMM Systems.” In Acous-
tics, Speech, and Signal Processing, 2000. ICASSP’00.
Proceedings. 2000 IEEE International Conference on,
3:1635–38. IEEE.
Hinton, Geoffrey E, Nitish Srivastava, Alex
Krizhevsky, Ilya Sutskever, and Ruslan R Salakhut-
dinov. 2012. “Improving Neural Networks by Pre-
venting Co-Adaptation of Feature Detectors.” ArXiv
Preprint ArXiv:1207.0580.
Hinton, Geoffrey, Li Deng, Dong Yu, George E Dahl,
Abdel-rahman Mohamed, Navdeep Jaitly, Andrew Se-
nior, et al. 2012. “Deep Neural Networks for Acoustic
Modeling in Speech Recognition: The Shared Views of
Four Research Groups.” Signal Processing Magazine,
IEEE 29 (6). IEEE: 82–97.
Hochreiter, Sepp, and Jürgen Schmidhuber. 1997.
“Long Short-Term Memory.” Neural Computation 9
(8). MIT Press: 1735–80.
Ioffe, Sergey, and Christian Szegedy. 2015. “Batch
Normalization: Accelerating Deep Network Training
by Reducing Internal Covariate Shift.” ArXiv Preprint
ArXiv:1502.03167.
Kalchbrenner, Nal, Edward Grefenstette, and Phil
Blunsom. 2014. “A Convolutional Neural Net-
work for Modelling Sentences.” ArXiv Preprint
ArXiv:1404.2188.
Koutník, Jan, Klaus Greff, Faustino Gomez, and Jür-
gen Schmidhuber. 2014. “A Clockwork Rnn.” ArXiv
Preprint ArXiv:1402.3511.
Lillicrap, Timothy P, Daniel Cownden, Douglas B
Tweed, and Colin J Akerman. 2014. “Random Feed-
back Weights Support Learning in Deep Neural Net-
works.” ArXiv Preprint ArXiv:1411.0247.
Livescu, Karen, Eric Fosler-Lussier, and Florian
Metze. 2012. “Subword Modeling for Automatic
Speech Recognition: Past, Present, and Emerging
Approaches.” Signal Processing Magazine, IEEE 29
(6). IEEE: 44–57.
Martens, James. 2010. “Deep Learning via Hessian-
Free Optimization.” In Proceedings of the 27th Inter-

national Conference on Machine Learning (ICML-10),
735–42.

Martens, James, and Roger Grosse. 2015. “Optimiz-
ing Neural Networks with Kronecker-Factored Approx-
imate Curvature.” ArXiv Preprint ArXiv:1503.05671.

Mohri, Mehryar, Fernando Pereira, and Michael Riley.
2002. “Weighted Finite-State Transducers in Speech
Recognition.” Computer Speech & Language 16 (1).
Elsevier: 69–88.

Nair, Vinod, and Geoffrey E Hinton. 2010. “Rectified
Linear Units Improve Restricted Boltzmann Machines.”
In Proceedings of the 27th International Conference
on Machine Learning (ICML-10), 807–14.

Ollivier, Yann. 2013. “Riemannian Metrics for Neural
Networks.” ArXiv Preprint ArXiv:1303.0818.

Palangi, Hamid, Li Deng, Yelong Shen, Jianfeng Gao,
Xiaodong He, Jianshu Chen, Xinying Song, and Rabab
Ward. 2015. “Deep Sentence Embedding Using the
Long Short Term Memory Network: Analysis and
Application to Information Retrieval.” ArXiv Preprint
ArXiv:1502.06922.

Pascanu, Razvan, and Yoshua Bengio. 2013. “Revis-
iting Natural Gradient for Deep Networks.” ArXiv
Preprint ArXiv:1301.3584.

Pearlmutter, Barak A. 1994. “Fast Exact Multiplica-
tion by the Hessian.” Neural Computation 6 (1). MIT
Press: 147–60.

Povey, Daniel, Arnab Ghoshal, Gilles Boulianne,
Lukas Burget, Ondrej Glembek, Nagendra Goel,
Mirko Hannemann, et al. 2011. “The Kaldi Speech
Recognition Toolkit.” In IEEE 2011 Workshop on
Automatic Speech Recognition and Understanding.
Hilton Waikoloa Village, Big Island, Hawaii, US: IEEE
Signal Processing Society.

Povey, Daniel, Xiaohui Zhang, and Sanjeev Khudan-
pur. 2014. “Parallel Training of Deep Neural Net-
works with Natural Gradient and Parameter Averag-
ing.” ArXiv Preprint ArXiv:1410.7455.

Saon, George, Hong-Kwang J Kuo, Steven Rennie,
and Michael Picheny. 2015. “The IBM 2015 English

18

Conversational Telephone Speech Recognition System.”
ArXiv Preprint ArXiv:1505.05899.

Senior, Alan, Georg Heigold, Marc’Aurelio Ranzato,
and Ke Yang. 2013. “An Empirical Study of Learning
Rates in Deep Neural Networks for Speech Recogni-
tion.” In Acoustics, Speech and Signal Processing
(ICASSP), 2013 IEEE International Conference on,
6724–28. IEEE.

Sutskever, Ilya, James Martens, George Dahl, and
Geoffrey Hinton. 2013. “On the Importance of Ini-
tialization and Momentum in Deep Learning.” In
Proceedings of the 30th International Conference on
Machine Learning (ICML-13), 1139–47.

Szegedy, Christian, Wei Liu, Yangqing Jia, Pierre
Sermanet, Scott Reed, Dragomir Anguelov, Dumitru
Erhan, Vincent Vanhoucke, and Andrew Rabinovich.
2014. “Going Deeper with Convolutions.” ArXiv
Preprint ArXiv:1409.4842.

Tai, Kai Sheng, Richard Socher, and Christopher D
Manning. 2015. “Improved Semantic Representa-
tions from Tree-Structured Long Short-Term Memory
Networks.” ArXiv Preprint ArXiv:1503.00075.

Vanhoucke, Vincent, Matthieu Devin, and Georg
Heigold. 2013. “Multiframe Deep Neural Networks
for Acoustic Modeling.” In Acoustics, Speech and Sig-
nal Processing (ICASSP), 2013 IEEE International
Conference on, 7582–85. IEEE.

Vasilache, Nicolas, Jeff Johnson, Michael Mathieu,
Soumith Chintala, Serkan Piantino, and Yann Le-
Cun. 2014. “Fast Convolutional Nets with Fbfft:
A GPU Performance Evaluation.” ArXiv Preprint
ArXiv:1412.7580.

Vesely, Karel, Arnab Ghoshal, Lukás Burget, and
Daniel Povey. 2013. “Sequence-Discriminative Train-
ing of Deep Neural Networks.” In INTERSPEECH,
2345–49.

Viterbi, Andrew J. 1967. “Error Bounds for Con-
volutional Codes and an Asymptotically Optimum
Decoding Algorithm.” Information Theory, IEEE
Transactions on 13 (2). IEEE: 260–69.

Werbos, Paul J. 1990. “Backpropagation Through

Time: What It Does and How to Do It.” Proceedings
of the IEEE 78 (10). IEEE: 1550–60.

Weston, Jason, Sumit Chopra, and Antoine Bor-
des. 2014. “Memory Networks.” ArXiv Preprint
ArXiv:1410.3916.

Young, Steve J, Julian J Odell, and Philip C Wood-
land. 1994. “Tree-Based State Tying for High Ac-
curacy Acoustic Modelling.” In Proceedings of the
Workshop on Human Language Technology, 307–12.
Association for Computational Linguistics.

Zeiler, Matthew D. 2012. “ADADELTA: An Adap-
tive Learning Rate Method.” ArXiv Preprint
ArXiv:1212.5701.

Zhang, Xiang, and Yann LeCun. 2015. “Text
Understanding from Scratch.” ArXiv Preprint
ArXiv:1502.01710.

Zhang, Xiaohui, Jan Trmal, Daniel Povey, and San-
jeev Khudanpur. 2014. “Improving Deep Neural
Network Acoustic Models Using Generalized Maxout
Networks.” In Acoustics, Speech and Signal Processing
(ICASSP), 2014 IEEE International Conference on,
215–19. IEEE.

19

	Introduction
	Presentation of the company
	Overview
	Adaptive-Understanding
	User benefits
	Human analysts benefits
	Company benefits
	Research benefits

	Applications
	Technical needs
	The Watson Research Team

	Speech and Language Technologies
	Natural Language Understanding
	Automatic Speech Recognition
	Language Model
	Acoustic Model
	Prior probability
	Decoding

	Deep Neural Networks
	General Definition
	Running
	Learning

	A more practical definition
	Typical architectures building blocks
	Activation Function
	Weight sharing
	Convolutional Neural Networks
	Recurrent Neural Networks

	Training Method

	Research tools and implementations
	DNN tools
	ASR tools

	Personal work and contributions
	MNIST
	DNN training parallelization
	Initial Problem
	Existing solutions
	Theoretical intuition
	Natural Gradient
	Feedback Alignment

	Experiments on ASR
	Bootstrapping
	Transition from MNIST
	Usual datasets
	Label and Word accuracy
	Decoding
	Subsampling
	\mathcal S method

	Comparison of Kaldi and Watson

	Conclusion
	Acknowledgment

	Bibliography

