Review of GPU-based Fast-FFD implementation

Mathilde Bateson, Elie Michel
December 7, 2016

This document is a review of [MRT 10] written as part of the validation process of the MVA lecture "Introduction
to Medical Image Analysis" [DP16].

1 Introduction

The process of deforming a floating image to match a reference image is at the heart of many applications of
medical imaging. Comparing two images requires to match what is common between them without losing what is
different. Thus, this problem remains one of the main research topics and challenges.

Among the transformation types proposed by the literature to address this issue, Free Form Deformation (FFD) as
introduced in [RSH'99| have been efficiently used in real applications. But a major issue of FFD-based registration
methods is their computational cost. Hence, the studied paper [MRT10] explores two different ways of addressing
this problem. The first one is through hardware optimization and the second one is algorithmic.

Section 2 first gives an overview of FFD. Then Section 3 details the main contributions of the paper, namely how
it improves the FFD. Section 4 reviews the evaluation process and the results of the method, in terms of both speed
and accuracy. Section b studies the context in which these contributions have been published and how it evolved
since then.

2 General FFD computation method

FFD has been developed to bring together the advantages of two classes of pre-existing methods for registration.
First, methods based on voxel-based similarity measures such as (normalized) mutual information [MCV197], which
take into account image intensity and contrast changes, but are limited to either rigid or affine transformations.
And second, the most commonly used nonrigid registration algorithms based on elastic [Thi98| or fluid deformations
[BNG96], which usually assume a constant tissue intensity between images.

The main idea of FFD is to deform an underlying mesh of control points, which controls the shape of the 3D
object. To capture local motion, the geometric transformation in the FFD is based on cubic B-splines, which are
locally controlled spline functions. Thus the resulting transformation is smooth and continuous.

The resolution of the control point mesh defines the number of degrees of freedom and, consequently, the com-
putational complexity, which is the bottleneck of this algorithm and the focus for improvement of this work.

3 Contribution

3.1 Hardware-based improvements

Leveraging on custom hardware is a natural way of trying to speed up a slow algorithm when one really needs it
to be faster, whatever the mean. Thus, there have been attempts to improve the speed of FFD by implementing it
on FPGAs, or using the power of some specific supercomputer.

But the studied paper adds to the goals the necessity of developing a method that does not require expensive
specific tooling, and hence focuses on the use of Graphics Processing Units (GPU).



Although a bit more specific than general purpose processors, GPUs are present in many computers, including
personal computers, and have been increasingly used for research-oriented computing tasks as reviewed in [OLG107|,
growing beyond their original role of video-game centric graphics rendering. This new use, often called GPGPU,
was made possible by the programmability of GPUs and has been notably fostered by initiatives of Nvidia and the
CUDA framework that have been designed with tasks such as physics simulation in mind.

The implementation presented in the studied paper makes use of CUDA. Another advantage of this technology
is that it is widely used, so widely understood and its hence makes the code easier to reuse, improve and maintain
for others. It is particularly interesting in the case of this publication because its publication was accompanied by
public code release and this code has then been effectively reused.

3.2 Algorithmic improvements

Beside implementing the method on a GPU, [MRT 10| proposes a revisited version of the FFD estimation
algorithm that also aims at speeding it up. A summary of the changes introduced in the algorithm is available in
Table 1.

3.2.1 Porting to GPU

The algorithmic changes are mainly motivated by the difference of specificities of the hardware in use. Indeed,
what can make GPU-based computing efficient is its ability to take benefit of data-parallelized operations, i.e.
similar computing operations applied to many different data.

So, as explained in [Har05|, porting an algorithm from CPU to GPU does not only consists in rewriting it in
another language. It consists in formulating the algorithm as those common operations, called for instance kernels
in CUDA’s vocabulary and apply them to a maximum of data points at the same time.

The paper reports that porting also includes memory-related considerations, but as well as these problems have
become far less concerning as they were before for CPU registries, close memory optimization for GPUs is becoming
less and less a problem.

Concurrent optimization So, in order to benefit from the GPU architecture, [MRT 10| decided to compute
in a parallel way the deformation. This parallelization capability released them from the constraint of the classical
algorithm imposing to compute control points one by one.

Shared gradient computation Optimizing all the control points at once made itself another improvement
possible. Computation could be shared among voxels when computing the gradient of the cost function at each
control point. Optimizing sequentially the voxel’s neighboring control points as done in the classical FFD leads
to the calculation of several time the same value. The studied paper proposed to first compute the gradient value
for every voxel (in parallel, when using a GPU implementation), and then compute the gradient values on all the
control points.

3.2.2 Gradient descent

They also used a different variant of gradient descent making iteration steps faster to compute by avoiding to
recompute the whole gradient at each step. More generally, many methods of gradient descent exist and new
variants are explored every year. The paper seems to have made an efficient enough choice, but new methods could
still be explored.

3.2.3 Energy function

The paper takes its formulation of the cost function to minimize almost directly from [RSHT99| used as reference
for the classical FFD. The energy function has two main terms. The first one is the normalized mutual information,
as explored in [MCV197|. The second one is a regularization penalty term fostering regular enough transformations.



Main steps of FFD

Classical FFD

Proposed method

Transforming the floating im-
age by interpolating the control
points

One control point optimized per
step

Concurrent optimisation and up-
date of control points

Calculating the objective func-
tion

A trade-off between image sim-
ilarity and smoothness of the
transformation

Same as in classic FFD, but com-
puting the bending-energy val-
ues at the control point positions
only

Optimising this objective func-
tion and updating the control
points

Simple gradient ascent

Conjugate gradient-ascent; par-
allel computation of voxel-centric
gradient instead of the node-

centric gradient (reduce redun-
dancy)

Table 1: Summary of the diffences between classical and proposed FFD algorithms.

As we’ve seen during the course, other terms can be added to the energy function. For instance, a stretching
energy term can be introduced. But using the same energy function was important to be able to compare fairly the
results.

4 Evaluation and Results

The purpose of the proposed method is to greatly improve the computation time while yielding same accuracy
levels. Thus both these criteria were used in the paper to evaluate the improvement.

4.1 Computation time

The source of the great improvement over the classical FFD algorithm is two-fold. A x100 speed improvement
was observed using the CPU formulations and implementations of the classical versus proposed FFD. A x10 speed
improvement was observed using the GPU versus the CPU implementations of the proposed FFD.

What is curious is that these algorithmic changes originally motivated by the specificities of GPU architecture
actually benefited to the CPU version as well. And this result seems to surprise the writers of the paper themselves.

4.2 Registration accuracy

Once proved that the proposed methodology greatly improves computation time, it is necessary to check that
the same accuracy level is still observed. Thus the Fast-FFD and classical FFD registrations were compared on a
dataset consisting of 20 T1-weighted brain MR images, 10 of which from patients with Alzheimer’s disease (AD)
patients, and 10 from age-matched control subjects. For each image, manual segmentations of different regions of
interest (Left/Right amygdale, L/R hippocampus, etc.) were used as ground truth, and registration was performed
against all other images. Dice similarity was used to measure the overlap.

Fast-FFD performed slightly better than classical FFD in most cases. The authors attributed this to the fact
that fast FFD was fast enough to iterate until convergence, whereas classical FFD was so slow that it was stopped
after 10 iterations, thus before convergence.

5 Discussion

This section adopts a more critical point of view over the original paper and explores how it relates to its research
field and applications.



Figure 1: Result of segmentation propagation based on registration. a) Propagated labels without registration. b)
Propagated labels with affine registration. ¢) Propagated labels with FFD registration. It is important to note that
although for display purpose we only show one slice in this report, the registered data is tridimensional.

5.1 Examples and reproductibility

In order to attest from the reproductibility of these results, we looked for examples beyond the scope of the paper
itself.

The first one that we show in Figure 1 is the result of segmentation propagation based on the transformation
retrieval as shown in [Nif], a tutorial provided with the software suite released with the paper. It is a good illustration
of the fact that beside the purely academic publication, time has been spend to effectively bring the method to
application. This is especially important in our opinion for implementation papers as this one.

For our second example, we even tried to reproduce the results ourselves using the proposed implementation.
The released code is clean enough to be understandable and it was easy to compile. We did not have easy access to

Figure 2: Unsuccessful attempt of registration between different expositions. The first image is the reference.
The second image is the floating image. The last image is the output of the FFD as computed by the proposed
implementation.



actual medical tridimensional data, thus we decided to stress-test the registration method by applying it to a non
medical imaging related problem.

We tried to use it to register bracketing images, a use case of image registeration coming from camera related issues.
The result shown in Figure 2 proposes a very abusive deformation of the image, while the original transformation
was almost affine.

But this shows two things. First, it illustrates well the kind of deformation that FFD can model. Second, it
proved to us that the implementation was usable in practice.

5.2 Other registration methods

FFD is not the only state-of-the-art method used for image registration. Listing all the alternative would be the
point of a full survey, like for example [SDP13]. And even more recently, the wave of neural networks has reached
this field and Convolutional Neural Networks (CNNs) have been applied to the problem of estimating transformation
parameters [MWLI16] in order to reach real-time registration, although it is still limited to 2D /3D registration. A
recent comparison of such implementations [XLHT16] shows that, the method presented here is still competitive
with some of the major actors, though it is consistently beaten by [HIBS13].

Since the publication of this paper, frameworks for transparent us of GPU for scientific computing have be-
came more and more used and powerful, especially for their automatic differentiation features [BPRS15]. These
frameworks could be advantageously used to implement Modat’s Fast-FFD algorithm with at least the same com-
putational power while benefiting from more flexibility in testing new variants of gradient descent or new hardware
setups.

6 Conclusion

The reviewed paper proposed a fast FFD technique, performing registration of T1-weighted MR images in less
than 1 min with the same level of accuracy as a classical serial implementation. The publication of the code of the
resulting NiftyReg software led to wide reuse and improvement by a community of researchers (60 publications).
For all these reasons, this project seems to us a good example of using available technology to bring concrete
improvements in the clinical setting.

References

[BNG96] Morten Bro-Nielsen and Claus Gramkow. Fast fluid registration of medical images. In Visualization in
Biomedical Computing, pages 265—-276. Springer, 1996.

[BPRS15] Atilim Gunes Baydin, Barak A Pearlmutter, Alexey Andreyevich Radul, and Jeffrey Mark Siskind.
Automatic differentiation in machine learning: a survey. arXiv preprint arXiv:1502.05767, 2015.

[DP16] Hervé Delingette and Xavier Pennec. Master mva 2016-2017 first semester : Introduction to medical im-
age analysis. http://www-sop.inria.fr/asclepios/cours/MVA/Modulel/index.htm, 2016. Accessed:
2016-12-05.

[Har05] Mark Harris. Mapping computational concepts to gpus. In ACM SIGGRAPH 2005 Courses, page 50.
ACM, 2005.

[HIBS13] Mattias P Heinrich, Mark Jenkinson, Michael Brady, and Julia A Schnabel. Mrf-based deformable
registration and ventilation estimation of lung ct. IEEE transactions on medical imaging, 32(7):1239—
1248, 2013.

[MCVT*97] Frederik Maes, Andre Collignon, Dirk Vandermeulen, Guy Marchal, and Paul Suetens. Multimodality
image registration by maximization of mutual information. IFEFE transactions on Medical Imaging,

16(2):187-198, 1997.



[MRT+10]

[MWL16]

[Nif]

[OLG+07]

[RSH*99]

[SDP13]

[Thi9s]

[XLH*16|

Marc Modat, Gerard R Ridgway, Zeike A Taylor, Manja Lehmann, Josephine Barnes, David J Hawkes,
Nick C Fox, and Sébastien Ourselin. Fast free-form deformation using graphics processing units. Com-
puter methods and programs in biomedicine, 98(3):278-284, 2010.

Shun Miao, Z Jane Wang, and Rui Liao. A cnn regression approach for real-time 2d/3d registration.
IEEF transactions on medical imaging, 35(5):1352-1363, 2016.

Niftyreg segmentation propagation tutorial. http://cmictig.cs.ucl.ac.uk/wiki/index.php/
NiftyReg_Segmentation_Propagation_Tutorial. Accessed: 2016-12-05.

John D Owens, David Luebke, Naga Govindaraju, Mark Harris, Jens Kriiger, Aaron E Lefohn, and
Timothy J Purcell. A survey of general-purpose computation on graphics hardware. In Computer
graphics forum, volume 26, pages 80-113. Wiley Online Library, 2007.

Daniel Rueckert, Luke I Sonoda, Carmel Hayes, Derek LG Hill, Martin O Leach, and David J Hawkes.
Nonrigid registration using free-form deformations: application to breast mr images. IEEE transactions
on medical imaging, 18(8):712-721, 1999.

Aristeidis Sotiras, Christos Davatzikos, and Nikos Paragios. Deformable medical image registration: A
survey. IEEE transactions on medical imaging, 32(7):1153-1190, 2013.

J-P Thirion. Image matching as a diffusion process: an analogy with maxwell’s demons. Medical image
analysis, 2(3):243-260, 1998.

Z Xu, CP Lee, MP Heinrich, M Modat, D Rueckert, S Ourselin, RG Abramson, and BA Landman. Eval-
uation of six registration methods for the human abdomen on clinically acquired ct. IEEE transactions
on bio-medical engineering, 2016.



