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Article history: A large number of algorithms have been developed to perform non-rigid registration and




1. Free-Form Deformation (FFD) [Rueckert99]
1.1. FFD principle
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1. Free-Form Deformation (FFD) [Rueckert99]
1.2. FFD computation

Gradient Ascent

with cost
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Second order regularization

Normalized Mutual Information [Maes97|
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1. Free-Form Deformation (FFD)
1.3. Problem

Gradient Ascent

takes

5 hours

for
181x127x181 voxels
40x44x40 control points

this makes it

Hard to apply

—> |Modat10| addresses this issue.
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2. Fast-FFD [Modat10]
2.1. Improvement directions

Hardware Software
Graphics Porcessing Units (GPU) Parallelization of the algorithm

NVIDIA. —
CUDA
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2. Fast-FFD [Modat10]
2.2. Hardware — Why GPU?

More expensive, harder to get

GPU

» Presentin almost any Personal Computer

—> leveraging on existing hardware

» Widely used for Scientific Computing

—> leveraging on existing tools and community

|Harris05| [Owens07| |Baydinl5|
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2. Fast-FFD [Modat10]
2.3. Algorithmic changes
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2. Fast-FFD [Modat10]
2.3. Algorithmic changes
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3. Results [Modat10]
3.1. Computation Time

Classical FFD Fast-FFD Fast-FFD
on CPU on GPU

5h 3 min 18 s <20 s
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3. Results [Modat10]
3.1. Computation Time

Classical FFD Fast-FFD Fast-FFD
on CPU on GPU

5h 3 min 18 s <20 s

./

unexpectedly important improvement
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3. Results
3.2. Accuracy

[Modat10]

Table 2 - Average (standard deviation) results of the segmentation propagation. For each propagation, the Dice similarity

value between the manual and the propagated segmentations has been computed.

Mask area Affine only Classical FFD Fast-FFD

Left amygdala

0.531 (0.163

0.759 (0.089

0.776 (0.066)

(0.163) (0.089)
Left entorhinal cortex 0.203 (0.189) 0.296 (0.164) 0.372(0.155)
Left fusiform gyrus 0.398 (0.103) 0.483 (0.096) 0.499(0.098)
Left hippocampus 0.429 (0.157) 0.658 (0.093) 0.686(0.075)
Left medial-inferior temporal gyrus 0.626 (0.070) 0.699 (0.061) 0.709(0.064)
Left parahippocampal gyrus 0.399 (0.146) 0.527 (0.094) 0.637(0.070)
Left superior temporal gyrus 0.607 (0.069) 0.742 (0.057) 0.737(0.048)
Left temporal lobe 0.748 (0.052) 0.832 (0.046) 0.827(0.041)
Right amygdala 0.571 (0.139) 0.779 (0.072) 0.787 (0.058)
Right entorhinal cortex 0.170 (0.177) 0.266 (0.169) 0.334 (0.162)
Right fusiform gyrus 0.450 (0.111) 0.542 (0.119) 0.534 (0.113)
Right hippocampus 0.479 (0.162) 0.631 (0.120) 0.710 (0.086)
Right medial-inferior temporal gyrus 0.662 (0.062) 0.763 (0.059) 0.760 (0.053)
Right parahippocampal gyrus 0.276 (0.208) 0.323 (0.189) 0.340 (0.275)
Right superior temporal gyrus 0.624 (0.055) 0.780 (0.048) 0.775 (0.040)
Right temporal lobe 0.733 (0.119) 0.811 (0.128) 0.813 (0.125)
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4. Follow ups and Reproductibility

4.1. Open Source implementation

git://git.code.sf.net/p/niftyreg/git niftyreg

» Code release

= important for an implementation paper
—> consistent with the willing of accessibility

» We tested it

—> easy to compile and run
= integrated with other tools

=> available documentation

The publication had concrete consequences
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4. Follow ups and Reproductibility

4.2. Comparison to other methods

|Xul6| Evaluation of six registration methods

—> Results have effectively been reroduced
= Studied method still competitive

TABLE I

METRICS ON 400 REGISTRATIONS FOR ALL TESTED METHODS (MEAN =+ STD)

Method DSC MSD (mm) HD (mm) Time (min)
FSL 0.12+0.19 37.92 +44.11 84.28 +59.96 951.73 + 201.20
ANTS-CC 0.18 £ 021 27.15+32.65 62.92 +44.60 411.60 + 74.20
ANTS-QUICK-MI 027 +£0.25 15.96 + 19.22 49.66 4+ 32.96 50.18 + 21.93
IRTK 028 +£0.26 19.07 +26.50 55.58 +39.26 220.27 + 91.79
[NIFTYREG 0.35+0.29 15.72 +19.16 59.59 +42.60 116.91 + 34.94 | .
DEEDS 049 + 026 8.63+16.16 40.15+32.11 3.73 +0.77 on/y the CPU version

Note that ANTS-CC, ANTS-QUICK-MI, and NIFTYREG used tw was tested

each registration process. The mean DSC across four large organs (liver, spleen, kid-
neys) is 0.19, 0.31, 0.43, 0.48, 0.55, and 0.70 for FSL, ANTS-CC, ANTS-QUICK-M]I,
IRTK, NIFTYREG, and DEEDS, respectively.
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5. Evolution of registration methods

|Xul6]| Evaluation of six registration methods

L |[Heinrich13]

|Sotiras13| survey of registration methods

Going further?

|[Miaol6| Application of CNNs to registration

|Baydinl5| Automatic differentiation

theano 1"

TensorF

. torch
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Thank you!

Questions?
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