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Abstract

While Reinforcement Learning (RL) studies how a single agent optimizes its reward
when interacting with a stationary environment, we review which hypothesis of
this model can be relaxed and how far. We show that a very flexible framework
to open RL is Multi-Agent Systems and Stochastic Game and then focus on the
notion of communication within collaborative setups.

Keywords Collaborative Reinforcement Learning, Game Theory, Multi-Agent Systems, Decentral-
ized Decision Making, Distributed Control.

This report is written as part of the validation process of the MVA lecture on Reinforcement
Learning by Alessandro Lazaric1.

1 Introduction

Reinforcement Learning (RL) [SB98] studies how an agent interacting with an environment through a
given set of action can determine a good policy with respect to a notion of reward. This trial-and-error
approach to decision-making has been applied to a wide variety of problems ranging from robotics
[KBP13] to economics [TK02] with impressive results, especially in the field of games [SHM+16].

We’ve studied during the lecture the application of RL to the case of an unique agent interacting
with a stationary environment. This problem is well-studied, so we wanted to open up the reflexion to
less explored horizons and see how far the paradigm of RL can be generalized to other setups.

In Section 2, we presents different possible axes of generalization of the RL problem and explain
why we focus on Multi-Agent RL (MARL). Then, Section 3 explicits the theoretical setup for MARL.
Section 4 gives an overview of the many challenges specific to the multi-agent aspect and narrows
again the scope of this study to Collaborative MARL. Within this perspective, Section 5 explores the
notion of communication inherent to collaboration and its different aspects. Section 6 gives some
actual application cases and finally Section 7 concludes this study.

2 Generalizing Reinforcement Learning

Different axes of generalization of the traditional RL problem (Figure 1) can be explored. We
present in this section the possibility of relaxing the stationarity of the agent policy, the stationarity of
the the environment and the uniqueness of the agent.

1http://researchers.lille.inria.fr/~lazaric/Webpage/MVA-RL_Course16.html

XXth Conference on Neural Information Processing Systems (NIPS 20xx), Paris, France – 2017.
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Figure 1: Traditional scheme of Reinforcement Learning. The usual RL task consists in determining
a decision policy. Other problems are sometimes studied, like inferring the reward (Inverse RL) or
the perception (in cognitive science).

2.1 Non-stationary policies

The stationarity of the agent policy becomes an issue as soon as the agent needs to remember what
happened in the past to take a decision.

This is required when the agent must observe the inertia of elements of its environment. For
instance, the velocity of the ball in a Pong game cannot be known by looking at one time frame of the
game screen only. More generally, it is very common in robotics [KBP13] to get a reward based on
the position while acting on derivatives only (through force and torque).

The easiest way solve this case is to extend the environment state to a fixed short term history, like
the last 2 or 3 observed states of the agent’s trajectory, in order to get the local dynamic of a system.
This solution works for any need for short term memory but exponentially complexes the problem.

Another way to look at this problem is to consider that the actual state of the game consolidates all
the orders of derivative describing its dynamic. Actually, the environment would not be considered as
stationary otherwise. For instance, modeling the Pong game requires to store at any time the velocity
of the ball, so it is actually part of the environment state. Since the agent cannot see this information
at a given time, this is a case partial observation (Section 7 of [KLM96]).

Whether it is because the environment has a very complex dynamics or the agent a too partial
observation, the short term history might not be enough for the agent to decide the right action. Non
stationary policies can hence be used. One can see them as an augmentation of the environment state
space by a learned agent-state space comparable to arbitrary memory. This learned space compresses
elements of history that the agent might need in a potentially continuous form, as in Recurrent Neural
Networks, and can foster long term features as with Long-Short Term Memory [HS97].

Online learning, like in multi-armed bandits problems, can also be considered as a case of non-
stationary policy. In this case, run time is also train time, so the policy is always changing.

2.2 Non-stationary environment

Unless we are doing online learning, non-stationary policies are theoretically relevant only in non-
stationary environments. Partially observe a stationary environments is actually equivalent to fully
observe a non-stationary environments. Agent may have access to a model-based knowledge of how
the environment evolves, like in physically grounded dynamic environments.

Another property of the environment as presented in Figure 1 that can change in time is the reward
function, e.g. the target of the agent (Adaptive Learning). The evolution of the perception process is
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less explored, as observation is in a majority of cases a total snapshot of the environment state, but
this could be seen as kind of visual glare effect.

2.3 Multiple agents

Independently from RL, Multi-Agent Systems, also called Agent-Based Model in social sciences
[HCSB11], have been studied a lot. Learning has been hence naturally introduced into this domain as
a generalization of RL, giving birth to Multi-Agent Reinforcement Learning (MARL).

From the point of view of a given agent, other agents are part of the environment. Since other
agents are learning as well, this problem can be compared to RL in non-stationary environment. But
MARL considers all the agent, which introduces new issues like the notions of local and global goals.

As pointed out in [BBDS08], a multi-agent setup can also be a way of looking in a different
perspective at a centralized decision taking problem that could actually be modeled as a traditional
RL but features some local pattern.

The case of two adversarial agents with opposite goals in a stateless environment, commonly called
zero-sum game, has been studied during the lecture, but the field of MARL is actually much wider,
as we’ll see in Section 4. Since non-stationary environments can be considered as particular cases
of MARL where the non-stationarity is modeled by an extra agent, we focus bellow on the MARL
modeling.

3 Formalism for MARL

3.1 Markov Decision Process

We expressed the environment for traditional RL as a Markov Decision Process (MDP). An MDP is a
tuple (S,A, τ, ρ) where S is environment’s state space,A is the agent’s action space, τ : S×A×S →
[0, 1]2 is the state transition probability function and ρ : S ×A× S → R is the reward function. An
MDP is finite when S and A are finite sets.

For a time step t, we note st ∈ S, at ∈ A and rt ∈ R respectively the state, the action taken and
the reward obtained. The agent behavior is modeled by a policy π : S ×A → [0, 1]. When the policy
is deterministic, we note it π̄ : S → A. Similarly, a deterministic state transition function is noted
τ̄ : S ×A → S.

3.2 Stochastic Game

The generalization of MDPs applied to multi-agent setups [Lit94] is called Stochastic Game (SG) or
Markov Game. An SG of n agent is a tuple (S,A1, . . . ,An, τ, ρ1, . . . , ρn) where the environment’s
state-space is still shared but each agent i has its own action set Ai and its own reward ρi.

Even if agents are symmetric, i.e. have qualitatively identical action spaces, it is important to
distinct an action a as performed by agent i from the "same" action as performed by j because they
don’t act from the same "position"3

The state transition function is not agent-dependent because the environment state is what is shared
among agents, but it takes the action of each agent as input, namely τ : S×A1×· · ·×An×S → [0, 1].
We note for convenience Â = A1 × · · · × An. In general, the reward functions also depend on the
action taken by each agent, ρi : S × Â × S → R, but are different for different agents.

2Formally, τ should map S ×A to probability distributions over S. In the case of finite MDPs, it is enough
to use this notation if we assume that for all s and a,

∑
s′∈S τ(s, a, s

′) > 0.
3Interestingly, the notion of position can be defined, beyond its geometrical meaning, as what makes the

"same" action have a different impact on the environment.
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Example Zero-sum game modeled by a SG with two agents in a stateless environment, i.e. S = {s}
(so τ̄(s, a1, a2) = s) and ρ̄1(s, a1, a2) = −ρ̄2(s, a1, a2). A stateless SG is sometimes called a static
game.

A policy for an agent of a SG is a map πi : S ×Ai → [0, 1] or π̄i : S → Ai if it is deterministic.
Here again, we can define a joint version of the policy π̂ : S × Â→ [0, 1].

3.3 Fully Cooperative Stochastic Game

It is important to note that if all agents share the same target ρ1 = ρ2 = · · · = ρ̂, the tuple (S, Â, τ, ρ̂)
is a valid MDP and traditional RL could be applied to find a join policy π̂. This is called a fully
cooperative SG.

Nevertheless, there remains a capital difference between applying single-agent RL to the MDP
formulation of the problem and applying MARL to the SG formulation: MARL can handle the
case of decentralized learning in which each agent learns its part of the policy independently or
with limited access to other agent’s learning. Even when centralized learning is possible, it can be
interesting to structure the problem as a SG than as a huge product MDP.

Furthermore, the equivalence between a fully cooperative SG and an MDP is lost as soon as we
consider that agents have a partial and different observation. A Partially Observed MDP (POMDP) is
not equivalent to a decentralized POMDP [DABC16] if we impose constraints on how agents can
communicate. Even when an agent fully measures the environment state, it is possible that agents do
not see each other’s actions. This is also a case of partial observation which does not make sense in
the MDP formalism.

Remark As well as the MDP model is used in other contexts the RL such as Inverse RL or
behavioral studies in cognitive science, SG models are also used beyond the case of MARL. It can
for instance be used for studying relation between the micro and the macro levels in economics and
social sciences [Tro09].

4 Challenges of MARL

Dealing with multiple agents is very difficult in general and even with fixed policies emerging be-
haviors are really hard to predict. So research focuses on restricted classes of problems. An important
one is the case of adversarial stateless or stage games, in which there is no global environment, only
agent-agent interactions. The simplest examples are two players zero-sum or general-sum games,
but the study of these systems is more generally called Game Theory. A list of other typical classes
of MARL based problems is given in [BBDS08], along with general considerations about what
questions are specific to MARL compared to RL. We review those questions in the remaining of this
section.

4.1 Need for stochasticity

In a finite MDP, there exists a deterministic optimal policy (the greedy policy for Q-learning’s Q∗).
But this breaks in general as soon as we add a second agent. Let’s consider the worker/inspector
problem defined as follow:

Example There are two agents A (the worker) and B (the inspector) with respective action spaces
AA = {W,R} (for Work and Rest) and AB = {I,N} (for Inspect or Not). Agent A is always
rewarded with an income r unless it is inspected while resting. Agent B pays the income to A and
gets a reward of p if A works. Additionally, it pays an inspection cost c when choosing to inspect A.

Possible deterministic policies for the worker are "always working" or "always resting" and for the
inspector are "always inspecting" or "never inspecting". But it is easy to check that none of these
possibilities is optimal, and one of the agents will always have an incentive to change its strategy.
For instance, if the worker is never inspected it will stop working, but if the worker always rests,
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the inspector will have interest to start inspecting, so that there is no possible equilibrium in pure
strategies (i.e. deterministic).

This notion of stable policies is formalized in Game Theory as the Nash equilibrium, which
generally is in mixed strategies, meaning that the stable policies are probabilistic. There might be
zero, one or more Nash equilibria in a given problem.

4.2 Local and global goals

A well-known difficulty of MARL is the definition of the goal to optimize. There is a different reward
for each agent, and there are many ways of consolidating them into a single goal. Agents may have
contradictory, or at least correlated goals.

The problem is of course easier to solve for fully cooperative settings than for fully competitive
ones, but there are mixed setting or even more subtle cases like agents which are collaborative but
competing for a resource. Furthermore, there can even be a global goal not directly coming from
agents, like in regulation design that intends to shape local agent reward in order to make emerging
behavior match a given global goal.

To the typical exploration-exploitation trade-off, the presence of joint learning in MARL adds the
adaptation-stability trade-off. Even in adversarial setups, agents might have interest to make their
behavior predictable (stability) at the same time as they evolve with or against other agents’ changes
(adaptation). Without stability, a MARL algorithm would really struggle to converge.

4.3 Model-free and model-based

MARL also makes the definition of model-free and model-based setting more complex. An RL
problem is called model-based when there is some domain-knowledge manually introduced about the
underlying MDP, and model-free otherwise. But in MARL there are two very different aspects of the
SG that can be modeled: the (stationary) environment and the (evolving) other agents.

The modeling of other agents, called agent-awareness, is reviewed more in details in Section 5.3. It
introduces another interesting difference between collaborative MARL and the equivalent centralized
RL problem presented in Section 3.3: the MARL problem can be agent-aware but model-free with
respect to the environment itself. The equivalent RL problem loses this distinction and is model-based
without specifying that the model is only coming for agent-agent interactions.

On another side of the spectrum, the problem may feature a full model for the environment and
be hence so model-based that there is no nothing left to learn about the environment. This is called
Optimal Control [KBP13]. With a single agent, this is thus no longer RL, but with multiple agents
there is still the agent-agent interactions to learn. This usually involves collaborative agents and is
used for instance in swarm robotics [BFBD13].

Among the diversity of MARL problems, we limit the scope of this study to fully collaborative
agents as done in [PL05]. This suggests us to focus on the solutions for communication between
agents.

5 Communication, teaching, or imitation

We define communication in the more general way as what enables agents to share information. This
includes both active or passive communication. Active communication involves showing explicit
messages while passive communication is about observing what other agents do. In both cases, it
requires a minimum of agent-awareness.

Communication consists for the agents in "hacking" on a subset of their action space to start using it
as a communication mean. [FAdFW16] even hard-codes a set of actions as being for communication
only (no influence on immediate reward). Along with the action space Ai, agents have a message
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spaceMi that is not an argument of ρ. The communicative action space stops being used for its
consequence on the environment itself and is used for the consequence it has on other’s perception.

Learning communication is difficult without constraint because agents need to agree on a meaning
for signs, e.g. what state would cause an agent to send a given message. This is known as the symbol
grounding problem [Har90]. In a model for language emergence, [VD07] presents a list of principle
for symbol grounding inspired by the literature on children’s language acquisition.

We first explicit why there is a need for communication, and show first means of coordination.
We then focus on the different levels of agent awareness and finally present applications with deep
reinforcement learning.

5.1 Need for communication

There are two main reasons to need communication. The first one is to synchronize agent actions, and
the second one is to complete perception in the case of decentralized POMDPs.

Coordination-free methods exist, like Team-Q learning [Lit01] or Distributed Q-learning algorithm
[LR00] that deal with collaborative MARL but assume that the argmax of Q in Q-Learning is unique,
which is a big constraint. It is indeed very common to experience ties in practice because most
problems have symmetry properties. See Example 2 from [BBDS08] for a nice illustration of the tie
breaking problem.

Communication is also a workaround of the problem of incomplete perception of the full environ-
ment state or other agent actions. This is pointed out by [FAdFW16] (who forgets the synchronization
aspect of communication, by the way).

5.2 Hardwired communication

Most simple attempts to break ties include "social" conventions and role assignment. This is not
really communication because it is completely predetermined. For instance, agents are ordered by
priority and fully deterministic so that each agent can guess what the previous on has chosed. There
starts to be a communication process when prioritary agents are not especially deterministic but have
the ability to tell their choice to next agents to chose. More complex communication include learned
role assignments [PLL98].

Some methods make more assumptions on how agents can communicate and additively decompose
the state-action function Q into local members Q(x) = Q1(s, a1, a2) + Q2(s, a2, a3) + . . . . The
graph whose nodes are agent indices and an edge is present between i and j iff Qk(s, ai, aj) is part of
the previous Q sum is called the coordination graph. It is usually part of the a priori model provided
with the problem, but can also be learned [KHBV05]. The Qk can then be locally optimized.

5.3 Observation and agent-awareness

Passive, or indirect communication like between requires the observation of other agents by modeling
their potential behavior, which involves a priori agent-awareness.

Agent-awareness addresses a fundamental question of Multi-Agent Systems, which is peer recog-
nition. Are the agents conscious of having the same nature as their pairs? Do the agent recognize
the phenomena of their observed environment as being the action of other agents? The human brain
has hard-coded mechanism recognizing in other people’s action what it could have performed itself
through Human Mirror Neuron System [RFDC09].

Agent-awareness ranges from the simple fact of knowing that the non-stationarity of the observation
comes from the existence of other agents, potentially along with a static model of how they work, to
the precise dynamic modeling of other agents. An example of the latter for collaborative systems is
Joint Action Learners [CB98a], but this is also applied in adversarial setups as opponent modeling
[CM95].
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5.4 Communication in Deep Reinforcement Learning

As repeated in [BBDS08], an important concern of the research in MARL is about the scalability of
the algorithm. Indeed, the computational resources are sometimes already a problem with a single
agent, so it is even more critical with many agents.

Single-agent RL deals with huge or continuous state spaces using Deep Q-Networks to represent
the state-action function Q in a compressed way. This is sometimes called Deep Reinforcement
Learning. This approach can be applied to MARL, either on a small number of agents [TMK+15] or
on many agents for traffic light regulation for instance [vdP16].

And it has also been applied recently to the process of learning communication by [FAdFW16]
and [SSF16]. Opponent Modeling is also reaching Deep Reinforcement Learning [HBGKDI16].

[FAdFW16] proposes to learn communication between multiple fully cooperative agents in a
partially observed environment as a neural network. It tries two settings, one with and one without
back-propagation through the communications (Differentiable Inter-Agent Learning), which is in-
terpreted as communication feedback, as human beings do, like approbation gestures, etc. [SSF16]
presents a very similar approach.

In both cases, Deep Q-learning is used for communication but the learning is centralized.
[FAdFW16] notes though that the centralization is at learn time while run time has a decentral-
ized execution. But without decentralization at learn time, the problem can be interpreted as an MDP
problem. The interesting point of this way of looking at it is that, since communication network is
shared among all agents, the overall network can be seen as a Convolutional Neural Network.

6 Applications

Now that we reviewed the main challenges of Collaborative MARL, we present some possible
applications. [BBDS08] interestingly notes that in some of them the agent learn to serve a resource
that they own, while in other cases the agents learn when to exploit a passive resource.

For instance, in urban traffic control problems [SCGC08] [KG14] [vdP16] the agents are traffic
lights that are sending to their neighbors a flow of cars.

On another hand, multi-robot applications [Mat97] must deal with space sharing because a given
position in space can generally be occupied by at most one agent. We can cite again swarm robotics
[BFBD13] and its predecessor, the boids [Rey87] which includes agent avoiding policies, but also
the agreement problem in self reconfiguring robots [VKR09].

Quantitative social sciences is also interested in MARL problem, either for economy or with
initiatives such as the NewTies project [GdBB+06], which had the ambition of creating a complete
toy virtual society and study how agent learn to interact.

There are also interesting problems with small numbers of agents, like elevator scheduling [CB98b]
or distributed control like collaborative pendulum stabilization.

Finally, resource sharing like load balancing of problems in networks of sensors like packet routing
like cognitive radio networks [BLJ13] are very practical applications of MARL.

7 Conclusion

We have followed in this document a direction of opening of the RL paradigm to a wider range
of problems. We have seen that a particularly relevant track to explore is the multi-agent setting
and reviewed what new challenges it raises, to finally focus on communication process as part of
collaborative systems. This is an active field of research, and though there are interesting results there
remains a lot to find. Deep MARL started addressing the problem of computational resource but is at
this time still limited to centralized learning, which is a quite restrictive setup.
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