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Figure 1: Top row: (a) input image and an embedding polygonal cage; (b-d) deformations obtained usingMean-Value coordinates,
Cubic Mean-Value coordinates, and Green coordinates; (e) our conformal deformations obtained with cubic curves. Bottom
row: more resuls of our approach, using polynomial curves of various orders (from 1 to 7).

ABSTRACT
Cage coordinates are a powerful means to define 2D deformation

fields from sparse control points. We introduce Conformal polyno-

mial Coordinates for closed polyhedral cages, enabling segments

to be transformed into polynomial curves of any order. Extending

classical 2D Green coordinates, our coordinates result in confor-

mal harmonic deformations that are cage-aware. We demonstrate

the usefulness of our technique on a variety of 2D deformation

scenarios where curves allow artists to perform intuitive deforma-

tions with few input parameters. Our method combines the texture

preservation property of conformal deformations together with the

expressiveness offered by Bezier controls.
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1 INTRODUCTION
Cage coordinates offer artists a powerful means to define scalar and

vector fields over a whole planar 2D domain while manipulating

only a sparse value constraint on the boundary of this domain. This

boundary is typically formed by a polygon, and is referred to as the

cage (see Fig. 1.a). Cage coordinates are used for instance to easily

define deformation fields or color fields in image editing applica-

tions. In their simplest form, the user specifies a value 𝑓𝑖 for each

cage vertex 𝑣𝑖 , from which the whole function 𝑓 is inferred using

some regularity constraint. Importantly, the value 𝑓 (𝜂) at location
𝜂 inside the cage is expressed as a linear combination of the sample

values: 𝑓 (𝜂) = ∑
𝑖 𝜆𝑖 (𝜂) 𝑓𝑖 . The barycentric weights 𝜆𝑖 (𝜂) are the

cage coordinates of the point 𝜂. This formal constraint leaves flexibil-

ity about the type of user input and regularization prior while ensur-

ing that the cost of evaluating 𝑓 is bounded by the complexity of the

sparse cage. For instance Mean-Value coordinates (MVC) [Floater

2003; Hormann and Floater 2006], Positive Mean-Value coordinates

(PMVC) [Lipman et al. 2007] or Harmonic coordinates (HC) [Joshi

et al. 2007] belong to this category. Some other types of coordi-

nates use gradients and higher-order derivatives, in order to obtain

various properties like, for example, gradient interpolation and/or

control [Hou et al. 2017, 2018; Ilbery et al. 2013; Sun et al. 2012],

or infer specific differential properties on the induced deforma-

tion. Such examples include Green coordinates (GC) [Lipman et al.

2008], that express each point as a blending of both the cage vertex

positions and the cage edge normals: 𝜂 =
∑
𝑖 𝜙𝑖 (𝜂)𝑣𝑖 +

∑
𝑗 𝜓 𝑗 (𝜂)𝑛 𝑗 .
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Figure 2: Using the samenumber of control points, deforming
8 cubic curves (our approach, c) results in smoother andmore
intuitive editing than deforming 24 straight segments (b).

The mathematical properties of those coordinates as spatial func-

tions, such as smoothness, impact directly the quality of the diffused

function. Our work focuses on the case of cage-based deformation,

where the function 𝑓 returns the deformed location 𝜂 of a point 𝜂.

In this context, the properties of (i) smoothness, (ii) interpolation,

(iii) detail-preservation and (iv) intuitiveness of the controls are

in general the most important ones. Before detailing all of those

properties, we can already stress that they generally conflict each

others; it is impossible to obtain them all at the same time.

For example, enforcing exact boundary interpolation (using, e.g.,

MVC in Fig. 1.b) prevents the deformation field from being more

than continuous at the cage vertices. Reversely, detail preservation

offered by conformal transformations, that preserve local angles and
thus local texture aspect exactly, renders impossible interpolating

the deformation across the cage faces (see GC in Fig. 1.d).

Finally, considering curved cage elements in lieu of simple straight

segments offers a natural means to control both the tangential

stretch and the curvature along the deformation cage (see Fig. 2).

Such controls were recently introduced in the context of cage-based

deformation with Cubic Mean-Value coordinates [Li et al. 2013]

(see Cubic MVC in Fig. 1.c), that extend MVC to cages where rest

segments are deformed into cubic arcs. Being based on MVC, the

resulting deformations are interpolating, at the cost of being only

continuous at the boundary vertices and non-conformal.

We present in this work the first 2D cage-based deformation

method that allows using polynomial deformation functions of any
degree (see Fig. 1.e, 1.f, and 2), that are conformal by construction.

1.1 Related Work
A wide variety of modalities for deforming images and 2D vector

graphics have been proposed, such as for instance Free Form defor-

mations [Sederberg and Parry 1986], Moving-Least-Squares defor-

mations [Schaefer et al. 2006], or brush-based deformations [DeGoes

and James 2017]. We focus in this section on the existing works

on cage-based deformations, which are closest to our work. Some

key concepts apply equivalently in 2D and in 3D, and we discuss

related works for 3D deformations when most appropriate.

Interpolating coordinates. Mean-Value coordinates [Floater 2003;

Hormann and Floater 2006; Ju et al. 2005] (MVC) make use of the

Mean-value theorem of harmonic functions, and allow interpolat-

ing scalar functions across the cage faces everywhere in space

(not just the interior of the cage). Their closed-form expression

makes them an ideal subspace in several multiresolution defor-

mation frameworks [Huang et al. 2006] as well as in applications

beyond deformation, such as image editing and cloning [Farbman

et al. 2009]. In exchange for allowing for extrapolation outside the

cage, those coordinates may however be negative, which can result

in counter-intuitive deformation/diffusion behaviors.

To solve this issue, Positive Mean-value coordinates [Lipman

et al. 2007] (PMVC) consider the portion of the cage that is visible

from the evaluation point 𝜂, ensuring positivity of the created

coordinates. Making use of the GPU to solve for visibility, those

coordinates do not come with a closed-form expression.

Harmonic coordinates [Joshi et al. 2007] share similar properties

with PMVC: they are also interpolating and positive, as well as

defined inside the cage only. They also do not come with closed-

form expressions allowing for simple evaluation.

Finally, Cubic MVC [Li et al. 2013] extend MVC, and depart

strongly from the previously-cited methods in that they allow de-

forming each cage segment into curves, specifically cubic arcs. In

our work, we aim at providing similar deformation controls, while

trading interpolation for conformality and detail preservation.

Note that, all the methods cited above can also be controlled by

a curve network rather than a single cage: each region is deformed

independently and the continuity across edges of the network is

trivially ensured by the interpolation property.

Approximating coordinates. Green coordinates (GC), introduced

by Lipman et al. [2008] for 2D and 3D deformation, are to this

date the main cage-based technique that does not produce an in-

terpolating deformation field. They do however create conformal
deformations, which guarantees exact local aspect preservation.

GC are formally derived from Green’s third identity, that allows ex-

pressing any harmonic function from the diffusion of its boundary

Dirichlet and Neumann conditions. Note that Weber and colleagues

introduced in [2009] Cauchy coordinates, that are shown to be

equivalent to 2D Green coordinates. Following this, Weber et al.

analyzed in [2011] the properties of complex 2D barycentric map-

pings and demonstrated their expressive power compared with

more standard scalar barycentric blending of vector-valued cages.

Weber et al. introduced later Biharmonic coordinates [2012].

Those rely on a higher-order Green identity and require twice

the amount of coordinates compared to GC, as twice boundary

conditions are taken into account. While the direct setting of these

additional boundary conditions has not yet been demonstrated to be

an intuitive deformation tool, this results in more flexibility on the

deformation energies minimized within a variational framework

and allows for higher-quality deformations in this context.

Our work is closely related to GC and Cubic MVC, as we pro-

vide harmonic 2D conformal deformations based on Green’s third

identity for the case of cages made of straight segments being de-

formed into polynomial curves of any degree. We therefore focus

on these two methods to illustrate the novelty of our work, both

scientifically and in terms of practical applications.

1.2 Contributions
We present in this paper the following technical contributions:
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• a formulation of 2D Green coordinates associated with cages

made of properly-oriented, non-intersecting curves, baking

in the conformality property into the coordinates;

• closed-form expressions for 2D cages made of segments, that

can be deformed into polynomial curves of any degree.

To the best of our knowledge, our work is the first to introduce

closed-form expressions for conformal 2D deformations inferred

by non-straight curve guides.

2 BACKGROUND: 2D CAGE-BASED
CONFORMAL DEFORMATIONS USING
GREEN COORDINATES

Using Green’s third identity, we can express a harmonic function 𝑓

in a bounded 2D domain Ω from its boundary conditions as

𝑓 (𝜂) =
∫

𝜉∈𝜕Ω

𝑓 (𝜉) 𝜕𝐺
𝜕𝑛𝜉
(𝜉, 𝜂)𝑑𝜉

︸                     ︷︷                     ︸
:=𝑓D (𝜂 )

+
∫

𝜉∈𝜕Ω

−𝐺 (𝜉, 𝜂) 𝜕𝑓
𝜕𝑛𝜉
(𝜉)𝑑𝜉

︸                        ︷︷                        ︸
:=𝑓N (𝜂 )

, (1)

with𝐺 (𝜉, 𝜂) := 1

2𝜋 log(∥𝜉−𝜂∥) solution to △1𝐺 (𝜉, 𝜂) = △2𝐺 (𝜉, 𝜂) =
𝛿 (∥𝜉 − 𝜂∥) and 𝑛 the unit normal of the cage at point 𝜉 . The term

𝑓D (𝜂) (resp. 𝑓N (𝜂)) corresponds to the contribution given by the

diffusion of the Dirichlet (resp. Neumann) boundary condition.

We consider in the following the cage 𝜕Ω as a non-intersecting

closed polygon made of vertices 𝑣𝑖 ∈ V connected by edges 𝑒 𝑗 ∈ E
(oriented Counter-Clock-Wise by convention). We note deformed

quantities with a bar (̄·) and rest-pose quantities without it.

In the Green coordinates proposed by Lipman et al. [2008], the

following Dirichlet and Neumann conditions are used:

𝑓 (𝜉) =
∑︁
𝑖

Γ𝑖 (𝜉)𝑣𝑖 (2)

𝜕𝑓

𝜕𝑛𝜉
(𝜉) = 𝜎 𝑗𝑛 𝑗 ∀𝜉 ∈ 𝑒 𝑗 , (3)

where Γ𝑖 is the "hat basis function"

that takes value 1 on vertex 𝑖 , 0 at the

other vertices and is linear on each

edge, and 𝜎 𝑗 and 𝑛 𝑗 are respectively

the stretch factor and the normal of

the linearly-deformed edge 𝑒 𝑗 . Both

quantities are constant across 𝑒 𝑗 as

they depend on the (constant) edge linear map only.

Injecting these boundary conditions in Eq. 1 results in the fol-

lowing compact expression for 𝑓 :

𝜂 := 𝑓 (𝜂) =
∑︁
𝑖∈V

𝜙𝑖 (𝜂)𝑣𝑖 +
∑︁
𝑗∈E

𝜓 𝑗 (𝜂)𝜎 𝑗𝑛 𝑗 , with (4)

𝜙𝑖 (𝜂) :=

∫
𝜉∈𝐹1 (𝑖 )

Γ𝑖 (𝜉) 𝜕𝐺
𝜕𝑛𝜉
(𝜉, 𝜂)𝑑𝜉 (5)

𝜓 𝑗 (𝜂) :=

∫
𝜉∈𝑒 𝑗

−𝐺 (𝜉, 𝜂)𝑑𝜉 (6)

Lipman and colleagues prove in [2008] the following lemma:

Lemma 1 (Lipman’s et al. conformality condition). Assum-
ing a deformation function 𝑓 given by Eq. (4), 𝑓 is conformal ev-
erywhere strictly inside Ω iif the stretch factor 𝜎 𝑗 on edge 𝑗 is the
deformed-edge-length by rest-edge-length ratio:

𝜎 𝑗 =
∥𝑒 𝑗 ∥
∥𝑒 𝑗 ∥

. (7)

3 2D CONFORMAL GREEN COORDINATES
FOR CURVE-CAGES

We build atop the previously-introduced 2D Green coordinates,

and present here our formulation for Green coordinates for cages

made of non-intersecting curves {𝑐𝑖 }𝑖 that form the boundary 𝜕Ω
(oriented CCW) of a compact domain Ω.

In this context, Eq. (1) still holds, and, for the sake of simplicity,

we can focus our analysis on the contribution of a single curve

𝑐 : [0, 1] ↦→ R2
(still noting 𝑐 the deformed curve). We note

𝑓 𝑐D (𝜂) :=
∫
𝜉∈𝑐 𝑓 (𝜉)

𝜕𝐺
𝜕𝑛𝜉
(𝜉, 𝜂)𝑑𝜉 its contribution to the Dirichlet term,

and 𝑓 𝑐N (𝜂) :=
∫
𝜉∈𝑐−𝐺 (𝜉, 𝜂)

𝜕𝑓
𝜕𝑛𝜉
(𝜉)𝑑𝜉 its contribution to the Neu-

mann term.

3.1 General formulation
We present here the general case where the rest curve 𝑐 and de-

formed curve 𝑐 can be any𝐶1
arc. We will then present closed-form

expressions for simple families of curves.

Dirichlet term. We can rewrite the Dirichlet term as:

𝑓 𝑐D (𝜂) =
1∫

𝑡=0

𝑐 (𝑡) ▽1𝐺 (𝑐 (𝑡), 𝜂) · 𝑛𝑐 (𝑡 ) ∥𝑐′ (𝑡)∥𝑑𝑡,

where we simply introduced the natural parameterization of the

curve in the integral (noting 𝑐′ (𝑡) the speed vector at 𝑡 , the infini-

tesimal linear element is given by 𝑑𝜉 = ∥𝑐′ (𝑡)∥𝑑𝑡 for 𝜉 = 𝑐 (𝑡)).
Since the curve 𝑐 is oriented CCW,we canwrite that𝑛𝑐 (𝑡 ) ∥𝑐′ (𝑡)∥ =

𝑐′ (𝑡)⊥, where (𝑎, 𝑏)⊥ = (𝑏,−𝑎). Noting that ▽1𝐺 (𝜉, 𝜂) = 𝜉−𝜂
2𝜋 ∥𝜉−𝜂 ∥2 ,

we obtain:

𝑓 𝑐D (𝜂) =
1∫

𝑡=0

𝑐 (𝑡) (𝑐 (𝑡) − 𝜂) · 𝑐
′ (𝑡)⊥

2𝜋 ∥𝑐 (𝑡) − 𝜂∥2
𝑑𝑡 . (8)

Neumann term. Introducing the conformality condition of Lemma 1

leads to the following reformulation of the Neumann term:

𝑓 𝑐N (𝜂) =
1∫

𝑡 ∈0

−𝐺 (𝑐 (𝑡), 𝜂)

𝑛̄︷     ︸︸     ︷
𝑐′ (𝑡)⊥
∥𝑐′ (𝑡)⊥∥

𝜎︷   ︸︸   ︷
∥𝑐′ (𝑡)∥
∥𝑐′ (𝑡)∥

𝑑𝜉︷     ︸︸     ︷
∥𝑐′ (𝑡)∥𝑑𝑡

=

1∫
𝑡 ∈0

−1

2𝜋
log (∥𝑐 (𝑡) − 𝜂∥) 𝑐′ (𝑡)⊥𝑑𝑡 (9)

To understand why this is the right formulation for the Neumann

term incorporating the conformality condition of Lemma 1, one

can discretize the curve 𝑐 into a polyline 𝑐 (𝑐 : [0, 1] ↦→ R2
, with

𝑐 (𝑡𝑘 ) = 𝑐𝑘 , 𝑐 affine on the segment [𝑡𝑘 , 𝑡𝑘+1], with 𝑡𝑘 = 𝑘/𝑁 ), and



preprint, Michel and Thiery

notice that Lemma 1 implies then:

𝑓 𝑐N (𝜂) =
∫
𝜉∈𝑐

−𝐺 (𝜉, 𝜂) 𝜕𝑓
𝜕𝑛𝜉
(𝜉)𝑑𝜉 =

𝑁−1∑︁
𝑘=0

∫
𝜉∈[𝑐𝑘 ,𝑐𝑘+1 ]

−𝐺 (𝜉, 𝜂) 𝜕𝑓
𝜕𝑛𝜉
(𝜉)𝑑𝜉

=

𝑁−1∑︁
𝑘=0

©­­«
∫

𝜉∈[𝑐𝑘 ,𝑐𝑘+1 ]

−𝐺 (𝜉, 𝜂)𝑑𝜉
ª®®¬𝜎𝑘𝑛𝑘 (formulation of Lipman et al.)

=

𝑁−1∑︁
𝑘=0

©­­«
𝑡𝑘+1∫

𝑡=𝑡𝑘

−𝐺 (𝑐 (𝑡), 𝜂)∥𝑐′ (𝑡)∥𝑑𝑡
ª®®¬
(𝑐𝑘+1 − 𝑐𝑘 )⊥
∥𝑐𝑘+1 − 𝑐𝑘 ∥

∥𝑐𝑘+1 − 𝑐𝑘 ∥
∥𝑐𝑘+1 − 𝑐𝑘 ∥

=

𝑁−1∑︁
𝑘=0

𝑡𝑘+1∫
𝑡=𝑡𝑘

−𝐺 (𝑐 (𝑡), 𝜂) (𝑐𝑘+1 − 𝑐𝑘 )
⊥

∥𝑐𝑘+1 − 𝑐𝑘 ∥
∥𝑐𝑘+1 − 𝑐𝑘 ∥
∥𝑐𝑘+1 − 𝑐𝑘 ∥

∥𝑐′ (𝑡)∥𝑑𝑡 (10)

where 𝜓𝑘 (𝜂) is the usual Green coordinate of 𝜂 associated with

segment [𝑐𝑘 , 𝑐𝑘+1], 𝑛𝑘 :=
(𝑐𝑘+1−𝑐𝑘 )⊥
∥𝑐𝑘+1−𝑐𝑘 ∥ is the unit normal on that

segment, and 𝜎𝑘 :=
∥𝑐𝑘+1−𝑐𝑘 ∥
∥𝑐𝑘+1−𝑐𝑘 ∥ is the deformed length over initial

length ratio advocated by Lipman et al., resulting in conformal

deformations for any such polygonal approximation of the curve 𝑐 .

Taking the limit 𝑁 →∞ results in point-wise convergence towards

Eq. (9) (by definition of the Riemann integral).

To formally guarantee conformality of the limit, we need to

ensure uniform convergence as well around the neighborhoods of

each point 𝜂. We sketch a concise proof in the following.

Since we consider points 𝜂 strictly inside the cage (say, at distance
3𝛼 from 𝜕Ω), there exist 𝑁 ∗ such that the open disk 𝐷𝛼 of radius

𝛼 and center 𝜂 is at distance at least 𝛼 from 𝜕Ω and its polygonal

approximation 𝜕Ω𝑁 for 𝑁 > 𝑁 ∗.
Since all terms we consider (𝐺 and all its derivatives, curves

𝑐 and all their derivatives) are bounded, we can show uniform

convergence of Eq. (10) towards Eq. (9) (and similarly for their

derivatives w.r.t. 𝜂) inside 𝐷𝛼 . This is enough to prove that the

derivatives match point-wise at the limit (i.e., switching limit and

differentiation operators is permitted).

Taking all input curves of 𝜕Ω into account and considering the

Dirichlet term as well, we obtain that the presented polygonal

approximation (that is conformal at 𝜂 for any 𝑁 > 𝑁 ∗) converges
uniformly towards our formulation, both in value and derivative

w.r.t. 𝜂. Since the conformality penalty is a simple combination of

the derivatives (𝐸conf (ℎ) := ∥𝜕𝑦 (ℎ) − 𝜕𝑥 (ℎ)⊥∥2 for any function ℎ),
and any polygonal approximation 𝑓𝑁 is conformal (i.e., 𝐸conf (𝑓𝑁 ) =
0 for 𝑁 > 𝑁 ∗), we can conclude that

𝐸conf (𝑓 ) = 𝐸conf

(
lim

𝑁→∞
𝑓𝑁

)
= lim

𝑁→∞
𝐸conf (𝑓𝑁 )

= 0

3.2 Straight segments to polynomial curves
We present now closed-form expressions for a simple family of

curves: straight regular segments at encoding (i.e., 𝑐 (𝑡) = ∑
1

𝑘=0
𝑡𝑘𝑐𝑘 )

being deformed into polynomials of order𝑁𝑐 (i.e., 𝑐 (𝑡) =
∑𝑁𝑐

𝑚=0
𝑡𝑚𝑐𝑚).

3.2.1 Dirichlet term. The Dirichlet term can be rewritten as the

integral of a rational fraction:

𝑓 𝑐D (𝜂) =
1∫

𝑡=0

𝑐 (𝑡) (𝑐 (𝑡) − 𝜂) · 𝑐
′ (𝑡)⊥

2𝜋 ∥𝑐 (𝑡) − 𝜂∥2
𝑑𝑡

=

1∫
𝑡=0

𝑁𝑐∑︁
𝑚=0

𝑡𝑚𝑐𝑚
(𝑐0 − 𝜂 + 𝑡𝑐1) · 𝑐⊥

1

2𝜋 ∥𝑐 (𝑡) − 𝜂∥2
𝑑𝑡

=

𝑁𝑐∑︁
𝑚=0

(
𝐹
(𝑐,𝜂 )
𝑚 (𝑐0 − 𝜂) · 𝑐⊥1

)
︸                    ︷︷                    ︸

:= 𝜙
(𝑐,𝜂)
𝑚

𝑐𝑚, (11)

where we define 𝐹 as:

𝐹
(𝑐,𝜂 )
𝑛 :=

1∫
𝑡=0

𝑡𝑛

2𝜋 ∥𝜂 −∑
1

𝑖=0
𝑡𝑖𝑐𝑖 ∥2

𝑑𝑡 (12)

A closed-form expression of 𝐹
(𝑐,𝜂 )
𝑛 is given in Section 3.3.

3.2.2 Neumann term. The Neumann term can be rewritten as

𝑓 𝑐N (𝜂) =
−1

2𝜋

1∫
𝑡=0

log (∥𝑐 (𝑡) − 𝜂∥) 𝑐′ (𝑡)⊥𝑑𝑡

=
−1

2𝜋

[
log (∥𝑐 (𝑡) − 𝜂∥) 𝑐 (𝑡)⊥

]
1

𝑡=0

+
1∫

𝑡=0

(𝑐 (𝑡) − 𝜂) · 𝑐′ (𝑡)
2𝜋 ∥𝑐 (𝑡) − 𝜂∥2

𝑐 (𝑡)⊥𝑑𝑡

=
−1

2𝜋

[
log (∥𝑐 (𝑡) − 𝜂∥) 𝑐 (𝑡)⊥

]
1

𝑡=0

+
1∫

𝑡=0

(𝑐0−𝜂) ·𝑐1 + 𝑡 ∥𝑐1∥2

2𝜋 ∥𝑐 (𝑡) − 𝜂∥2
𝑐 (𝑡)⊥𝑑𝑡

=

𝑁𝑐∑︁
𝑚=1

(
𝐹
(𝑐,𝜂 )
𝑚 (𝑐0−𝜂) ·𝑐1+𝐹 (𝑐,𝜂 )𝑚+1 ∥𝑐1∥2 −

log ∥𝑐0+𝑐1−𝜂∥
2𝜋

)
︸                                                            ︷︷                                                            ︸

:= 𝜓
(𝑐,𝜂)
𝑚

𝑐⊥𝑚 (13)

Note that𝜓
(𝑐,𝜂 )
0

= 0, which is trivial to see beforehand since 𝑐0

does not appear in the expression of 𝑐′ (𝑡) (see first line of Eq. (13)).

3.2.3 Final expression. The final contribution of curve 𝑐 (with de-

formed value 𝑐) to the deformation of 𝜂 is:

𝑓 𝑐D (𝜂) + 𝑓
𝑐
N (𝜂) =

𝑁𝑐∑︁
𝑗=0

𝜙
(𝑐,𝜂 )
𝑗

𝑐 𝑗 +
𝑁𝑐∑︁
𝑚=1

𝜓
(𝑐,𝜂 )
𝑚 𝑐⊥𝑚

Considering the whole contour 𝜕Ω, we obtain:

𝜂 = 𝑓 (𝜂) =
∑︁
𝑐∈𝜕Ω

𝑁𝑐∑︁
𝑛=0

(
𝜙
(𝑐,𝜂 )
𝑛 𝑐𝑛 +𝜓 (𝑐,𝜂 )𝑛 𝑐⊥𝑛

)
(14)

3.3 Closed-form expression of 𝐹𝑛
We find the following closed-form expression for 𝐹

(𝑐,𝜂 )
𝑛 :
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𝐹
(𝑐,𝜂 )
𝑛 =

Im (𝜔𝑛𝐷 (𝜔) +𝑈𝑛 (𝜔))
2𝜋 ∥𝑐1∥2 Im(𝜔)

(15)

with 𝐷 (𝜔) := Log(1 − 𝜔) − Log(0 − 𝜔) (16)

and𝑈𝑛 (𝜔) :=

𝑛−1∑︁
𝑘=1

𝜔𝑘

𝑛 − 𝑘 (17)

where 𝜔 is any of the complex roots

of the second order polynomial ∥𝜂 −∑
1

𝑖=0
𝑡𝑖𝑐𝑖 ∥2 and Log is the complex

logarithm. Note that 𝜔 is the local co-

ordinates of 𝜂 in the frame relative to

the edge (or its conjugate):

𝜔 =
𝑐1 + 𝑖𝑐⊥

1

∥𝑐1∥2
· (𝜂 − 𝑐0) (18)

Mathematical derivation. We prove in the following Eq. 15. The

denominator of the integrand is a real polynomial of degree 2 so it

can be decomposed into a product of complex monomials:

𝐹
(𝑐,𝜂 )
𝑛 =

1∫
𝑡=0

𝑡𝑛

𝑃 (𝑡)𝑑𝑡 , with 𝑃 (𝑥) =: 𝐴

2∏
𝑘=1

(𝑥 − 𝜔𝑘 ) ,

where 𝐴 = 2𝜋 ∥𝑐1∥2 is a normalization factor. Since 𝑃 (𝑡) is always
positive (it is originally a squared norm), its roots are pair-wise

conjugate of each others: 𝜔2 = 𝜔∗
1
.

We also note 𝑄𝑘 =
𝑃 (𝑥 )
𝑥−𝜔𝑘

the polynomial 𝑃 without its 𝑘-th

monomial, so that we can write the following (assuming that 𝑥

equals none of the 𝜔𝑘 ):

2∑︁
𝑘=1

𝑥𝑛

𝑥 − 𝜔𝑘

=
𝑥𝑛

𝑃 (𝑥)

2∑︁
𝑘=1

𝑄𝑘 (𝑥)

We write 𝑄 =
∑
𝑘 𝑄𝑘 and since this sum of polynomials has degree

1 we can also write 𝑄 (𝑥) = ∑
1

𝑗=0
𝑞 𝑗𝑥

𝑗
where 𝑞 𝑗 ∈ C:

2∑︁
𝑘=1

𝑥𝑛

𝑥 − 𝜔𝑘

=

1∑︁
𝑗=0

𝑞 𝑗
𝑥𝑛+𝑗

𝑃 (𝑥) (19)

We then use the following lemma:

Lemma 2. Let𝜔 ∈ C and𝑔 (𝜔 )𝑛 : 𝑥 ↦→ 𝑥𝑛

𝑥−𝜔 . A primitive of𝑔 (𝜔 )𝑛 for

𝑥 such that 𝑥 −𝜔 ∉ R− is𝐺 (𝜔 )𝑛 : 𝑥 ↦→ 𝜔𝑛
Log(𝑥 −𝜔) +

𝑛∑
𝑙=1

𝑥𝑙

𝑙
𝜔𝑛−𝑙 .

Proof. We can see that if 𝑥 − 𝜔 ∉ R− , we have

𝐺
(𝜔 )′
𝑛 (𝑥) = 𝜔𝑛

𝑥 − 𝜔 +
𝑛∑︁
𝑙=1

𝑥𝑙−1𝜔𝑛−𝑙

=
𝜔𝑛

𝑥 − 𝜔 +
𝑛∑︁
𝑙=1

𝑥𝑙−1𝜔𝑛−𝑙 (𝑥 − 𝜔)
𝑥 − 𝜔

=
𝜔𝑛

𝑥 − 𝜔 +
𝑛∑︁
𝑙=1

𝑥𝑙𝜔𝑛−𝑙

𝑥 − 𝜔 −
𝑛−1∑︁
𝑙 ′=0

𝑥𝑙
′
𝜔𝑛−𝑙 ′

𝑥 − 𝜔

=
𝑥𝑛

𝑥 − 𝜔 = 𝑔
(𝜔 )
𝑛 (𝑥)

□

Since 𝜂 is strictly inside the cage, none of the 𝜔𝑘 belongs to the

range (0, 1). Hence we can apply this lemma to integrate Eq. 19:[
2∑︁

𝑘=1

𝜔𝑛
𝑘

Log(𝑥 − 𝜔𝑘 ) +
2∑︁

𝑘=1

𝑛∑︁
𝑙=1

𝑥𝑙

𝑙
𝜔𝑛−𝑙
𝑘

]
1

𝑥=0

=

1∑︁
𝑗=0

𝑞 𝑗𝐹
(𝑐,𝜂 )
𝑛+𝑗

We remark that, ∀𝑥 ∈ R:
𝜔𝑛

2
Log

(
𝑥 − 𝜔2

)
=

(
𝜔∗

1

)𝑛
Log

(
𝑥 − 𝜔∗

1

)
=

(
𝜔𝑛

1
Log

(
𝑥 − 𝜔1

) )∗
.

Since ∀𝑧 ∈ C, 𝑧 + 𝑧∗ = 2 Re(𝑧), the previous equation becomes:

2 Re

(
𝜔𝑛

1
𝐷 (𝜔1) +

𝑛∑︁
𝑙=1

𝜔𝑛−𝑙
1

𝑙

)
=

1∑︁
𝑗=0

𝑞 𝑗𝐹
(𝑐,𝜂 )
𝑛+𝑗

where we recall that 𝐷 (𝜔) = Log(1 − 𝜔) − Log(0 − 𝜔).
With the notation 𝜔1 = 𝜔 and 𝜔2 = 𝜔∗, we have:

𝑃 (𝑥) = 𝐴(𝑥 − 𝜔) (𝑥 − 𝜔∗)
𝑄 (𝑥) = 2𝐴(𝑥 − Re(𝜔)).

It follows that:

1

𝐴
Re

(
𝜔𝑛𝐷 (𝜔) +

𝑛∑︁
𝑙=1

𝜔𝑛−𝑙

𝑙

)
= 𝐹
(𝑐,𝜂 )
𝑛+1 − Re(𝜔)𝐹 (𝑐,𝜂 )𝑛 .

We note 𝑉𝑛 (𝜔) = 𝜔𝑛𝐷 (𝜔) +𝑈𝑛 (𝜔), and thus derive:

𝐹
(𝑐,𝜂 )
𝑛+1 = Re(𝜔)𝐹 (𝑐,𝜂 )𝑛 + 1

𝐴
Re

(
𝑉𝑛 (𝜔) +

1

𝑛

)
(20)

with the convention that
1

𝑛 = 0 if 𝑛 = 0 to alleviate notations. Note

that in the implementation we use𝑊𝑛 = 𝑉𝑛 + 1/𝑛 to get a nicer

recurrent relation. If we assume recursively that 𝐹
(𝑐,𝜂 )
𝑛 =

Im(𝑉𝑛 (𝜔 ) )
𝐴 Im(𝜔 ) ,

we find that:

𝐴 Im(𝜔)𝐹 (𝑐,𝜂 )
𝑛+1 = Re(𝜔) Im(𝑉𝑛 (𝜔)) + Im(𝜔) Re(𝑉𝑛 (𝜔)) +

Im(𝜔)
𝑛

= Im(𝜔𝑉𝑛 (𝜔)) + Im

(𝜔
𝑛

)
= Im

(
𝑛−1∑︁
𝑘=1

𝜔𝑛+1−𝑘

𝑘
+ 𝜔

𝑛

)
= Im(𝑉𝑛+1 (𝜔))

Thuswe get 𝐹
(𝑐,𝜂 )
𝑛+1 =

Im(𝑉𝑛+1 (𝜔 ) )
𝐴 Im(𝜔 ) .We also verify that 𝐹0 =

𝐼𝑚 (𝑉0 (𝜔 ) )
𝐴 Im(𝜔 ) =

𝐼𝑚 (𝐷 (𝜔 ) )
𝐴 Im(𝜔 ) , which ends the proof.

3.4 Implementation details
We give the encoding procedure for straight rest edges in Alg. 1.

Encoding. In practice, we use the relation of Eq. (20) to recur-

sively compute the terms 𝐹
(𝑐,𝜂 )
𝑛 up to 𝑛 = 𝑁 + 1:

𝑊0 = 𝐷 (𝜔) ; 𝐹0 =
Im(𝐵𝑊0 )

Im(𝜔 )
𝑊𝑛+1 = 𝜔𝑊𝑛 + 1

𝑛+1 ; 𝐹𝑛+1 = Re(𝜔𝐹𝑛 + 𝐵𝑊𝑛),

where 𝐵 = 1

2𝜋 ∥𝑐1 ∥2 ∈ R. We use the following expression for 𝐷 (𝜔):

𝐷 (𝜔)= 1

2

log

(
1+ 1−2 Re(𝜔)

∥𝜔 ∥2

)
+ 𝑖 atan2

(
Im(𝜔), ∥𝜔 ∥2−Re(𝜔)

)
(21)
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Numerical stability. 𝐷 (·) is well defined for 𝜂 ∉ 𝑐 : The log(·)
is ill-defined only for ∥𝜔 ∥2 = 0 or 1 − 2 Re(𝜔) ≤ −∥𝑤 ∥2, which is

equivalent to 𝜔 = 0 or 𝜔 = 1 (i.e., for 𝜂 on the extremities of 𝑐). The

arctan(·) is well defined for 𝜔 ≠ 0 or 𝜔 ≠ 1 as well.

Similarly, 𝐹0 is well defined as long as Im(𝜔) ≠ 0 (i.e., 𝜂 not

on the line directed by 𝑐). For Im(𝜔) = 0, the imaginary part of

𝐷 (𝜔) is equivalent to Im(𝜔)/(∥𝜔 ∥2 − Re(𝜔)) in this case (since

tan(𝑥) ≃ 𝑥 for 𝑥 ≃ 0), and therefore we obtain the special case for

𝐹0 : 𝐹0 = 𝐵/(∥𝜔 ∥2 − Re(𝜔)) when Im(𝜔) = 0, which is again valid

as long as 𝜔 ≠ 0 and 𝜔 ≠ 1 (i.e., for 𝜂 on the extremities of 𝑐).

Run-time. Our coordinates being based on the integral convolu-

tions ofmonomials, the artist can precompute the coordinates up to

a given order 𝑁 , and still choose at run-time to change the degree

𝑘 ≤ 𝑁 of the editing curves without coordinate recomputation.

Indeed, computing the deformation simply requires decomposing

the artist’s Bézier curves onto the usual monomials basis, which can

be done per-curve once at every frame without hindering perfor-

mances. Such flexibility could not be as easily obtained, should we

have used the Bézier basis instead. If the artist desires manipulating

curves of higher degree than originally anticipated however, it will

be necessary to recompute new monomial coordinates. While the

low-degree coordinates will match the ones that were previously

computed, it is not clear that past computations can be reused with-

out having to store many intermediate ones (detailed in Alg. 1), and

recomputation from scratch appears necessary in this case.

ALGORITHM 1: Encoding of a rest position 𝜂 into our polynomial

Green coordinates. This must be done for each CCW-oriented edge

𝑐 of the rest cage. 𝑁 is the degree of the deformed curve 𝑐 .

Data: A point 𝜂 from inside the rest cage and a directed edge 𝑐 of

the rest cage represented by its vertices 𝑣0 and 𝑣1.

Result: The arrays 𝝓 and 𝝍 holding the coordinates 𝜙
(𝑐,𝜂)
𝑛 and

𝜓
(𝑐,𝜂)
𝑛 of the point 𝜂 with respect to 𝑐 .

𝑥 ← 𝜂−𝑣0

∥𝜂−𝑣0 ∥ ·
𝑣1−𝑣0

∥𝑣1−𝑣0 ∥ ; 𝑦 ←
√

1 − 𝑥2
; 𝜔 ← ∥𝜂−𝑣0 ∥

∥𝑣1−𝑣0 ∥ (𝑥 + 𝑖𝑦) ;
𝐵 ← 1

2𝜋 ∥𝑣1−𝑣0 ∥2
;

𝑊 ← 𝐷 (𝜔 ) ; // see Eq. (21)

𝐹 ← | Im(𝜔 ) | < 𝜖 ?
𝐵

∥𝜔 ∥2−Re(𝜔 ) :
𝐵 Im(𝑊 )

Im(𝜔 ) ;

for 𝑛 ← 0 to 𝑁 + 1 do
𝑭 [𝑛] ← 𝐹 ;

𝐹 ← Re(𝜔 )𝐹 + 𝐵 Re(𝑊 ) ;
𝑊 ← 𝜔𝑊 + 1

𝑛+1 ;

end
𝛼 ← −(𝜂 − 𝑣0 ) · (𝑣1 − 𝑣0 )⊥; 𝛽 ← −(𝜂 − 𝑣0 ) · (𝑣1 − 𝑣0 ) ;
𝛾 ← ∥𝑣1 − 𝑣0 ∥2; 𝛿 ← − 1

2𝜋
log( ∥𝑣1 − 𝜂 ∥ ) ;

for 𝑛 ← 0 to 𝑁 do
𝝓 [𝑛] ← 𝛼𝑭 [𝑛];
𝝍 [𝑛] ← 𝛽𝑭 [𝑛] + 𝛾𝑭 [𝑛 + 1] + 𝛿 ;

end
𝝍 [0] ← 0;

4 RESULTS AND COMPARISONS
We present in Fig. 5 various examples of image deformation, com-

paring our approach to other cage-based deformation methods and

showing that it provides smooth and controllable results both for

(c) Cubic MVC (d) Green (e) Cubic Green(b) MVC

(a) Rest pose

Figure 3: Using as many control points, our Cubic Green
coordinates (e) bring to GC (d) the same smoothness that
Cubic MVC (c) bring to MVC (b).

(b) Cubic MVC (c) Cubic Green

(a )2

(a )1

Figure 4: Compared to Cubic MVC (b), our conformal Cubic
Green coordinates (c) preserve the local texture aspect of the
original image (a1,a2).

organic and mechanical images. Fig. 3 highlights that enabling a

curved deformation of the cage provides a regularity that cannot

be matched with straight segment, even when using an equivalent

number of control points. Among the two methods that handle

curved deformation, Fig. 4 shows that ours is the only one to pre-

serve the local texture details. Our method is also able to go higher

in the polynomial degrees of the curved segments (Fig. 1.f and 6).

Comparison with GC. Our technique extends formally Green

Coordinates [Lipman et al. 2008] to the case of polynomial curves.

While it is feasible to build a multiresolution framework by discretiz-

ing polynomial curves into segments, and summing up the con-

tributions of the various segments to obtain the final deformation

function, this approach has a few shortcomings. First, approaching

smooth curves by a collection of straight segments does not lead

to similarly-looking corresponding shape deformations (see Fig. 2

and Fig. 3). Second, the artist has to know in advance where she de-
sires approximating curvature, as those are the regions that require
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more sampling of the curves. If animation is considered, beyond

static deformation, this might be rendered impossible in practice

without sacrificing quality. Finally, this approach requires storing

more coordinates, and a more complex implementation.

Comparison with Cubic MVC. Cubic MVC are strongly related

to our work, in many ways. They build atop the Green identity on

the unit disk, to diffuse both Dirichlet and Neumann conditions

on the unit projection sphere, which is a key ingredient to define

MVC and all its variants [Hormann and Floater 2006; Ju et al. 2005;

Lipman et al. 2007; Thiery et al. 2018]. Cubic MVC allow inter-

polating both boundary conditions and defining the deformation

function everywhere in space (not just inside the cage). Providing

exact interpolation as well as extrapolation comes at a cost: it is then

impossible to ensure conformal deformations. Contrary to MVC

and Cubic MVC, we trade the interpolation property for the confor-

mality one, and ensure that the local aspect of details is preserved
exactly, which is emphasized in our various results. Similarly, we

trade the extrapolation property for the cage-awareness of the stan-
dard Green coordinates, namely we obtain satisfactory results even

if limbs are extremely close in the rest-pose (see Fig. 5).

Note that Li and colleagues [2013] show examples of deforma-

tions using curved-cages; however they rely on a cage-straightening
step in order to define an intermediate straight-cage and intermedi-

ate image, which then becomes in fine the real input configuration
fed to their deformation framework. We focus our work on straight
cages as well and leave the construction of conformal deformations

with input curved-cages for future work.

5 DISCUSSION
Link with Cauchy coordinates. As already stressed, our work

can be seen as an extension of classical Green coordinates, which,

when tuned for conformality using the condition of Lemma 1, are

equivalent to Cauchy coordinates [2009]. As shown by Weber and

colleagues, those are simpler to derive than Green coordinates.

Extending Cauchy coordinates instead of Green coordinates

could probably be done – resulting in formulas that would be equiv-

alent to ours, and it would probably bring other benefits.

Limitations and Future work. Our work has several limitations.

The first one, which is shared by all existing works on 2D cage-

based editing, is that we require cages made of straight segments

at encoding. This prevents the user from deforming simple shapes

with few parameters, if those shapes are not in a straight pose at

encoding. For example, while a simple box is used to deform a

straight snake, the same "curved box" cannot be used to deform a

"curved snake". Extending or work to allow for arbitrarily complex

rest-pose curves is our main future work.

Secondly, our approach requires setting by hand all the deforma-

tion curves. Designing variational frameworks such as [Weber et al.

2012] to allow artists to deform shapes with very few control points

in an interesting avenue for future work. It will require deriving

closed-form expressions for the derivatives of our coordinates.

The third limitation is that we require the artist to provide the rest

cage. While designing by hand 2D polygonal cages is much less te-

dious than designing cages for 3D deformations, (semi-)automating

this task might render our approach usable to a broader audience.

Finally, as we provide conformal deformations only, the shape

deformations do not always follow closely the deformation cage, as

conformality and interpolation are conflicting properties. Allowing

the user to specify regions where conformality might be relaxed to

better follow the deformed cage might be interesting. This might

be done by mixing various types of boundary conditions or by

damping the Neumann control points 𝑐⊥ in Eq. (14), in the spirit of

what Lipman and colleagues proposed in [2008] (Section 3, Fig.7),

but this remains to be investigated.

Conclusion. We presented in this work the first method to deform

2D shapes using cages made of straight segments being deformed

into polynomial curves of arbitrary order, and the first method

to provide conformal deformations using curve guides. Our con-

tribution can be seen as an extension of the popular 2D Green

coordinates, which have been the backbone of many subsequent

works, to the case of curve-cages. On the practical side, polynomial

curves (such as for example Bézier curves) being a key component

of all common 2D editing and modeling tools, we believe that our

approach will find many practical use cases both in industry and

within the general Graphics community.
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(a) Rest pose (b) MVC (c) Cubic MVC (d) Green (e) Cubic Green

Figure 5: Results of our approach for cubic curves (e). We compare with MVC (b), Cubic MVC (c), and usual Green coordinates
(d). More results featuring cages made of higher-degree curves are given in Fig. 6.
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Figure 6: Extra results of our approach, using polynomial curves of various degrees.
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